TABLE OF CONTENTS

3Nomenclature

Introduction
4
1. Patent and literature search
5
2. Technical specifications
6
3. Options for design
7
3.1 Analog-to-digital conversion
7
3.2 Decimation
8
3.3 Frequency Analysis
9
3.4 Hardware Realization
9
Field Programmable Gate Array Options
10
The Adder Module
11
Ripple-Carry Adder (RCA)
11
Pipelined Adder (PA)
12
Carry-Look Ahead Adder (CLA)
12
The Multiplier Module
13
Combinational Multiplier (CM)
13
Array Multiplier / Fast-Array Multiplier (FAM)
14
4. Selection criteria
14
5. Design Solution
15
5.1 System Solution
16
Analog-to-Digital Conversion
16
Decimation-Design Specifications
18
Decimation-Design Solution
18
Decimation-Implementation Details
22
Spectrum Analysis-Design Specifications
25
Spectrum Analysis-Design Solution
27
Spectrum Analysis-Eight Point FFT Design Solution
31
Matlab Simulations
36
Analog Filters
37
5.2 Hardware Design Solutions
40
ADC Selection
40
Hardware Design Summary
41
Design Strategy
41
System Overview
42
Design Methodology
45
System Testing
46
FPGA Selection
47
Design Future
47
Design Demonstration
47
Design Optimization
48
5.3 Computer Interface
49
6. System block diagram
53
7. Testing
54
7.1 Top-level Test
54
7.2 Bit-level Test
55
7.3 Verilog Test
55
7.4 Final System Test
56
8. Gantt Chart
57
9. Tracking Chart
58
10. Responsibility Matrix
59
11. Budget
59
12. References
60
Appendix A – Matlab Simulations
61
Appendix B - Hardware Module I/O Descriptions
76

Nomenclature

j

Imaginary number

t

Unit of time

n

Unit of discrete time

f

Frequency of a discrete time signal

F

Frequency of a continuous time signal

ω

Angular frequency

z

Complex variable

k

Unit of discrete frequency
xa(t)

Analog input signal

xs(n)

Sampled signal

xq(n)

Quantized, sampled signal

y(n)

Decimated signal

w(n)

Windowing sequence
Xa(f)

Frequency spectrum of analog input signal

Xs(f)

Frequency spectrum of sampled signal

Xq(f)

Frequency spectrum of quantized, sampled signal

Y(f)

Frequency spectrum of decimated signal

TS

Sampling period

FS

Sampling frequency

FC

Carrier frequency

FA

Intermediate frequency

BW

Bandwidth

BWI

Bandwidth of the information signal

D

Decimation factor

R

Decimation factor for CIC filter

N

Number of stages

Introduction
Digital receivers are replacing their analog counter parts in almost every field. We have already seen this occur as digital receivers have proliferated throughout the mobile phone market and could very well extend to broadcast in the near future. The design problem is determining the best method to digitize the analog signal, process the digital data, and output the processed data in a useful format. There are many different methods to accomplish these tasks, each with their own advantages and drawbacks.

The system which we are responsible for designing is part of a larger system which is intended to receive weak amateur radio signals that have been reflected off the moon. The input to our system is a 20MHz signal with a 12kHz bandwidth. This signal will be converted to digital format via an Analog-to-Digital Converter (ADC). The ADC will feed the information to an FPGA where it will be decimated to maximize spectrum usage by the information. After decimation, the signal will then be processed by a real-time FFT for output updated 10 to 100 times a second with at least 5Hz resolution. The frequency spectrum data will be taken from the output of the FFT and be displayed graphically on a computer.
1. Patent and literature search
To gain a better understanding of the technology needed to implement the Field Programmable Gate Array Spectrum Analyzer (FPGA-SA), a patent search was conducted. Three inventions were selected to provide us with the necessary background information. Each of these patents was chosen because they contained information that could be incorporated into our design.

The first patent (U.S. Pat. 6,100,834) is an Analog to Digital Converter (ADC). This ADC contains an amplifier, a digital-to-analog converter (DAC), and flash memory. It improves on conventional ADCs by using a predictor, which estimates the next digital value. The predictor is simply an accurate continuous-time error amplifier operating on the difference between the input signal and a feedback DAC. From here a converter is able to produce a digital result by adding the digital value produced by flash memory, properly scaled, to the current digital output value of the digital latch driving the DAC. This is related to our project since it gives an idea of the ADC technology that will be driving our FPGA.

The second patent (U.S. Pat. 4,870,302) is a Field Programmable Gate Array (FPGA). This invention allows a user to program logic functions into an integrated circuit. It uses a micro-controller and the user’s input to control a master configurable logic array (CLA). The master CLA then controls several smaller slave CLAs. Through this process it is possible to create a variety of gates including XOR, AND, OR, and D flip-flops. EEPROM (electrically erasable programmable ROM) is also included in this design so that the gates can be programmed, stored, and then reprogrammed at another time. This particular FPGA was patented under Xilinx in 1989. It is very closely related to the Xilinx FPGA we have selected for our design. The more current FPGA uses the same ideas to create the same effect, except on a much larger scale.

The final patent (U.S. Pat. 5,576,978) is a high resolution frequency analyzer. This invention is capable of examining an analog signal with the fast Fourier transform (FFT). It provides a high resolution output without a large sampling number. A series of input time data representing the analog signal is provided to the FFT via a subtractor. The analyzer distinguishes a spread spectrum, due to fluctuations, from a true line spectrum in the frequency spectra output by the FFT. If the spectrum is found to be the true line spectrum, then true frequency, amplitude, and phase of the line spectrum are accurately obtained by an interpolator. The line spectrum is accumulated by an accumulator and inversely converted by an inverse Fourier transform provided in a feedback loop to feedback time base data to the subtractor. The time base data is subtracted by the input time data so that the remainder data is applied to the FFT. The line spectrum accumulated by the accumulator is vector-added to the output of the FFT, which establishes a high resolution frequency spectrum to be displayed. This invention is very closely related to our project, and it gives an idea how high resolution frequency output can be achieved.

The first IEEE document entitled “The Theory of Bandpass Sampling” gives an in-depth look at bandpass sampling. The article points out the fact that whenever a band-pass signal is reproduced at a baseband position by sampling, the noise from all the aliased bands is combined into the baseband. It also discusses several ranges of uniform sampling rates that will cause aliasing, so great care needs to be taken when increasing the sampling rate from its minimum value. Several charts were included to give the reader an idea of the optimum sampling rates and to also point out the sampling rates that will cause irrecoverable losses. One of the main purposes of the article was to provide the simplest approach for sampling bandpass signals for digital processing. Since this article both explains the theory of bandpass sampling and also provides examples of how it is used, it is a very important resource for explaining the sampling technique that will be implemented in our design.

The second IEEE transaction is entitled “Application of Filter Sharpening to Cascaded Integrator-Comb Decimation Filters.” This transaction begins by describing the current Cascaded Integrator-Comb (CIC) architecture for the implementation of high order decimation filters. Next it discusses how the CIC filter introduces an unwanted droop in the passband and then states that the size of this droop is related to the decimation ratio. The author then proposes a method to sharpen the CIC filter to compensate for the droop by using a second-stage filter. He then continues by providing an example of the sharpened CIC architecture. This new design provides very-high data throughput with high accuracy and minimal chip size, making it an ideal implementation for offsetting the effects of the high decimation ratio in our design
The final IEEE transaction, “Design and Implementation of a Direct Digitization GPS Receiver Front End,” discusses the front end implementation of a direct digitization GPS receiver. The author begins this document by defining the front end of the receiver as the portion of the receiver from the antenna to the ADC. He then describes the pros and cons of high frequency sampling. Points such as the speed of the ADC and the difficulty of the processing are taken into account. The document provides several guidelines to follow when developing a generic front end receiver. The section of the document that we found most insightful was the discussion of sampling. Bandpass sampling was mentioned along with the additional constraints that must be taken into account when using this technique. The material on bandpass sampling from this document may be used to alert us of any potential problems in our design.
2. Technical specifications
The goal of our project is to digitally compute the frequency spectrum of an analog input signal. The input signal originates from a location on the Earth and is reflected off the moon before being received by an antenna at the front end of an analog receiver. The signal, at this point, has a very low Signal to Noise Ratio (SNR). The first stage of the receiver attenuates signals outside the 144-148MHz passband via bandpass filtering. This signal is then mixed down to a 20MHz Intermediate Frequency (IF) where it is again filtered. The information signal, which we are interested in recovering, then has a center frequency of 20MHz and a bandwidth of 12kHz. It is this analog signal which we wish to compute the frequency spectrum of.
Our project starts with specifying the analog to digital conversion sample frequency. The digital data from the ADC is then fed into a FPGA where it will be processed. The first stage of the processing is decimation of the signal. This is accomplished by first filtering the signal digitally to reduce the noise outside the frequencies of interest. Once this is done, it is possible to downsample the signal to approximately 24kHz without distortion.

The second stage of the processing is the frequency analysis. A FFT will produce the frequency components of the signal. This process must be done in real time about 10 to 100 times per second and have a resolution of at least 5Hz.

In the third and final stage of the system, the signal is output to a computer for display. The computer will take the input data and display it graphically. At this point, the user will be able to observe the frequency components of the original signal. See Figure 6.1 for an overview of the receiver.
3. Options for design
Although the input and output characteristics of our system are fixed, there are many possibilities for designing a system that satisfy both the input and output characteristics required. The design of our system can be broken up into the following subsystems:
· Analog-to-digital conversion
· Decimation

· Frequency analysis

Each subsystem has various options for design and will be considered separately starting with Section 3.1 – Analog-to-digital conversion.
3.1 Analog-to-digital conversion
Analog-to-digital conversion is a three-step process, as illustrated in Figure 3.1-1 [1].

[image: image1.wmf]Sampler

Quantizer

Coder

x

a

(

t

)

x

s

(

n

)

x

q

(

n

)

Figure 3.1-1: Analog to Digital

Converter

10011...

For the first step, the continuous time signal xa(t) is converted into a discrete time signal xs(n) by taking samples of the continuous time signal at every TS seconds. If we sample the analog signal with a sampling frequency of FS (FS=1/TS), the frequency spectrum of the signal is given by (3.1-1):

[image: image34.wmf]MHz

BW

F

S

012

.

40

006

.

20

*

2

*

2

=

=

³

(3.1-1)
where XS(f) is the frequency spectrum of Xa(f) after sampling. From (3.1-1) it is apparent that the Fourier transform XS(f) consists of a sum of magnitude-scaled replicas of Xa(f) sitting at integer multiples of FS.

To avoid aliasing and distortion of the signal, one would sample this signal at least as fast as the Nyquist Rate, give in (3.1-2):
[image: image35.wmf](

)

å

¥

-¥

=

-

=

k

S

a

S

S

kF

f

X

F

f

X

)

(

(3.1-2)
where BW is the bandwidth of the modulated signal, BW = 20.006MHz in this case.
Because of the significant expense of sampling at 40MHz another sampling technique called bandpass sampling [2] is considered for the design. Using bandpass sampling, we can sample at a rate significantly less than twice the carrier frequency and translate the carrier frequency to some intermediate frequency without the use of a mixer and without distortion of the information bandwidth. Bandpass sampling will be discussed in greater detail in the Section 5 – Design Solution.
Quantization is the conversion of the discrete-time continuous-valued signal xs(n) to the digital signal xq(n). For the quantization step of our design, we must sample at a resolution of at least 16 bits (see Table 4-1). Options for design include sampling at 16 bits, or any integer number of bits above 16.
In the coding process, each discrete value xq(n) is represented as a binary sequence. Options for the design of the coder include representing xq(n) as a ones complement or twos complement number. Also, we could represent xq(n) as non-negative binary number by adding a DC offset to the signal before analog-to-digital conversion.
3.2 Decimation

Following sampling, quantization, and coding, the next step is decimation. Decimation is the process of lowpass filtering a signal followed by downsampling. Figure 3.2-1 shows the process of decimation where D, in the figure, is the decimation ratio.

[image: image2.wmf]Lowpass

 Filer

Downsample by

factor of D

x

q

(

n

)

Figure 3.2-1: Decimator

x

q

(D*

n

)

There are two possible decimation algorithms that we have considered to carry out decimation. The first possibility is the use of a Cascaded Comb-Integrator (CIC) filter to decimate. The CIC filter is useful for high decimation ratios and can be implemented with the use of only adders and time delays. However, because of passband droop introduced by the CIC, the filter would need to be followed by a multirate FIR filter to equalize the passband. The second possibility is the use of cascaded multirate FIR filters. However, this implementation is not as effective for high decimation ratios as the CIC filter.
3.3 Frequency Analysis

The frequency analysis portion of the design will take the discrete time signal and compute its frequency spectrum. There are various algorithms to compute the Discrete Fourier Transform (DFT), each possessing tradeoffs between speed and space:

· Direct computation of the DFT

· Decimation in Time Fast Fourier Transform (DIT-FFT)
· Decimation in Frequency Fast Fourier Transform (DIF-FFT)
The DIT-FFT and DIF-FFT can be implemented using a radix-2, radix-4, or radix-2m (where m is some positive integer) algorithms.
Now that each subsystem of our design has been discussed, we will talk about the hardware realization of the system.
3.4 Hardware Realization

For the hardware realization of the Field Programmable Gate Array – Spectrum Analyzer (FPGA-SA), we must fit the Decimation, FFT, and Output algorithms to our selected technology, a Xilinx FPGA. FPGA’s are designed to provide a robust platform for rapid generation of hardware solutions. The cost of this robustness is the loss of dedicated (ASIC) hardware design, which allows relatively unlimited and minimized solutions. Instead, an FPGA compiler will map the designer’s hardware description to the device’s “limited” resources. Therefore, when developing a solution the designer is restricted by the available resources of the FPGA. For this reason, if the description is not carefully planned, the design can easily be out of the boundaries of the FPGA’s capabilities. Therefore care must be taken to develop a design that will balance the limitations of the FPGA with the requirements of the design to achieve an optimum realization for the selected device.

For the implementation of the FPGA-SA, the most crucial performance factors are size (the amount of available resources for realizing the design) and speed (the rate at which the data can be processed). These two factors are determined by the design of the modules that compose the hardware solution. To realize this spectrum analyzer, the discrete time signal must be processed through a decimator module and then a FFT module (see Figure 6.1: Digital Receiver Flow Chart). Therefore, an efficient realization of these modules within the space limitations of the FPGA is crucial. Regardless of the chosen implementation of these modules, heavy use of complex adders and multipliers will be necessary. Thus the architecture of these arithmetic units will be essential to the success of the design.

Field Programmable Gate Array Options

Before examining module design options, it is helpful to understand the targeted platform for the implementation of these modules. FPGA system development allows the designer to compile a design to multiple devices in simulation for comparison. Because we have the option of several devices across multiple platforms for our realization, we need only to understand the general performance specifications of the targeted platforms during module development. Our goal is to design an optimized solution, therefore once an ideal realization has been developed, the design can be compiled for implementation on each of the FPGA options to determine the most effective match between our solution and the technology.

As mentioned above, FPGA’s have various limitations posed by their design; however these limitations are optimized by the manufacturer for specific applications (i.e. digital signal processing, device control, etc). Since our design is a digital signal processing solution, we are looking for a FPGA that is targeted for this project type requiring cumbersome mathematical calculations at rapid speeds. The project description requests a Xilinx FPGA from either the Spartan II family or the low-end of the Virtex II family as a cost-effective solution technology.

The Virtex II family was developed for high performance from low-density to high-density designs including DSP applications. Its architecture is designed for high-speed operation (420MHz maximum) with low power consumption (1.5V power supply). The low power consumption satisfies the low power design constraint in Table 4-3. This platform’s most notable feature concerning our project is the optimized arithmetic function realizations. Specifically, the Virtex II platform is capable of performing a 1024-point, 16-bit complex FFT in 1(s using an internal clock speed of only 110MHz. These operations, as well as many other computation intensive operations, are optimized through the use of dedicated 18 x 18 bit multiplier blocks and fast carry-look ahead logic chains.

The Spartan II family was developed for high performance at low cost. Although this platform does not provide dedicated multiplier blocks or carry-look ahead logic, its architecture contains streamlining features based on the Virtex architecture for the execution of high-speed arithmetic operations through dedicated multiplier support and carry-logic. Spartan II devices operate at 2.5V (1.8V for E-series devices) and are capable of 200MHz internal clock speeds.

Both the Virtex II and Spartan II families lend themselves to high performance DSP applications. Each platform shares similar features for optimized hardware development including clock anti-skew technology, full PCI compliance, as well as versatile I/O interfaces and packaging. Most beneficial however is the existence of a common development environment for all Xilinx products. Xilinx provides the Foundation ISE Series fully integrated software package for hardware descriptive language (HDL) development. This product allows the designer to generate hardware descriptions and perform extensive testing in simulation. This package also performs the necessary compiling and routing of the design to fit any of Xilinx’s devices while providing critical size and speed information concerning the physical realization.

The Adder Module

A 2’s complement binary adder will be used extensively throughout the decimation, FFT, and multiplier modules. For this reason, effective design of this module is crucial to the successful implementation of our solution. This requires the determination of the optimum balance between complexity (size) and performance (speed) as related to each function. There are a multitude of algorithms for accomplishing binary addition at the hardware level, each with its own optimization between complexity and performance.

Ripple-Carry Adder (RCA)

This ripple-carry adder (RCA) is very simple realization composed of a string of full adders equal to the number of bits to be added (see Figure 3.4-1 – Ripple-Carry Adder). Each of these full adder modules requires only 7 gates per bit addition pair:

A[0] + B[0] + Cin = {Cout,S[0]} (requires 7 gates for realization

 (3.4-1)

However, due to the long propagation delay of the carry-bit though the width of the addition; this design delivers relatively low performance for large additions (> 4-bits).

[image: image36.png]AVACT

VIRTEE=8 OEVELDPAENT-B0ASD:

= ' : 4 . i

000000000

IWVNET

vies marketing
Tosign Servicas

Both of the FPGA platforms we are targeting offer “fast carry logic” which leverages the use of multiplexers in the carry chain to speed up the overall addition time. It is not known yet whether this feature will compensate the RCA sufficiently to out-perform other adder architectures, however it will be of use where simple realizations of small additions are beneficial.

Pipelined Adder (PA)

The pipelined adder (PA) is a variation on the ripple-carry adder described above. This realization takes advantage of the RCA’s simple, size-efficient design and introduces a technique known as pipelining to increase its performance. Pipelining is the use of registers to hold intermediate values between operations. As applied here, pipelining allows large additions to be accomplished in several steps by holding the results of smaller additions between cascaded levels of adders (see Figure 3.4-2). This minimizes the propagation delay resulting from the ripple of the carry-bit through each adder in the string of a RCA [3].

[image: image3]
Carry-Look Ahead Adder (CLA)

The carry-look ahead adder (CLA) is another binary addition algorithm that attempts to compensate for the propagation delay incurred by the carry-bit in ripple-carry addition. This realization generates ‘carry generate’ and ‘carry-propagate’ bits from the inputs to the adder. These bits are then used to determine the carry bits, which in turn are used to generate the final output of the adder (sum). Further details of this algorithm are not necessary other than the understanding that this design trades greater complexity for higher performance. Figure 3.4-3 shows a schematic of the CLA adder [6].

[image: image37.jpg]Data Path & Control

High Level Processing.

Low Level Processing

FIELD PROGRAMMABLE GATE ARRAY - SPECTRUM ANALYZER

Haraware Module Map

L 2

!

L 2

DECIMATION/decimation.v

FFT/4096ptFF T.v.

OUTFUT/autput.v.

FFT/
SPIFFT.y

ARITH
emplkALULy

OUTPUT/
postprocess.v

ARITH
emplkALULy

OUTPUT/
twiddle:v

ARITHfllad
derv

The Multiplier Module

A 2’s complement binary multiplier will also be used extensively throughout the decimation, and FFT modules. Therefore, as with the binary adder, effective design of this module is crucial to the successful implementation of our solution. This once again requires a realization of the optimum balance between complexity (size) and performance (speed) as related to each application. However, since multiplication is actually repeated addition, generating the most efficient realization can be a little more complicated.

Combinational Multiplier (CM)

A combinational multiplier (CM) accomplishes binary multiplication through a serial-parallel realization. That is, one of the multiplicands has all of its bits used during each stage while the other is used only one bit at a time. This is analogous with the manual method of multiplication completed by paper and pencil. However, because of the serial-parallel architecture of this design, completion of an N-bit multiplication can take more than N2 clock cycles creating high latencies for large multiplications.

Array Multiplier / Fast-Array Multiplier (FAM)

[image: image38.jpg]128*A B

64*A B

32*A By

16*A B

g*A B

A B

2*A B

1*A B

7]

6

5

4

7

\Y4

Pipeline
Registers

AN

WA

\Y4

AN

\

Prsa

" Ppa

> Pl

\

To eliminate the high latencies associated with a serial-parallel realization of multiplication, several parallel-parallel models have been developed such as the array multiplier or the fast-array multiplier (FAM) [3]. These implementations use all of the bits from both multiplicands simultaneously as inputs to an array of logic that generate the resulting output (product). The introduction of the array structure to this design requires log2 N stages and N2 adder cells for maximum throughput. Once again, this implementation has traded increased complexity for increased performance. The array multiplication algorithm can be further modified to use a one-dimensional cascaded structure. This structure allows the addition of pipelining for further performance increases by taking advantage of the ‘shift-N-left operation’ to multiply a binary number by factors of 2N at the input (see Figure 3.4-4).

4. Selection criteria

The digital portion of the weak signal receiver must conform to certain design constraints to fit properly into the overall system being developed by Raytheon. These design constraints can be broken into input design constraints, output design constraints, and system design constraints. The input and output design constraints ensure that our design will interface with its environment (i.e. the weak signal receiver) properly and produce usable results. The system design constraints are not concerned with interfacing or results, but instead are concerned with issues such as power consumption, cost, and availability.

The input design constraints require that the system be able to sample an analog signal at an intermediate frequency of 20MHz with a 12kHz bandwidth with a 16 bit quantization resolution. The sampling process cannot distort the information bandwidth. Table 4-1 presents the input design constraints.

	Table 4-1: Input Design Constraints

	Quantization Resolution
	16 bit

	Allowed Distortion of Information Band
	None

	Supported Input Bandwidth
	20MHz

The output design constraints require that the frequency spectrum be displayed graphically on a computer with at least 5Hz frequency resolution. The display should show the frequency spectrum as a row of pixels with the signal strength in each frequency bin represented by pixel brightness. The brightness of each pixel should be on an arbitrary 0-255 scale. Each time the frequency spectrum is updated, all the previous pixels should be moved up one and the new spectrum data entered at the bottom of the display. The frequency spectrum should be updated from 10 to 100 times per second. Table 4-2 presents the output design constraints.

	Table 4-2: Output Design Constraints

	Frequency Resolution
	5Hz

	Intensity Resolution Scale
	0-255

	Refresh rate
	10-100Hz

The system design constraints, which are concerned with implementation and cost considerations, require that the cost of the device components be kept below 100 dollars. Because our design consists of two components, each component should be kept below 50 dollars. Furthermore, all components should be commercially available and have lower power consumption. Table 4-3 presents the system design constraints.

	Table 4-3: System Design Constraints

	Cost of ADC
	<50 dollars

	Cost of FPGA
	<50 dollars

	Commercial Availability
	Required

	Power consumption
	Low

5. Design Solution
With the design constraints outlined in Section 4 in mind, we are now ready to present our design solution. The solution consists of two parts: 1) system solution and 2) hardware solution. The system solution is concerned with satisfying the input and output design constraints (see Table 4-1 and Table 4-2) in a computationally efficient manner. The hardware solution is concerned with satisfying the system design constraints (see Table 4-3).
We will present the system solution first, present Matlab simulations of the design solution, and then proceed to present the hardware solution. The system solution is broken into three sections:
1. Analog-to-Digital Conversion

2. Decimation

3. Frequency Analysis

First is Analog-to-Digital Conversion.
5.1 System Solution

Analog-to-Digital Conversion

There are two design parameters that require specification before an ADC can be implemented:

· Sample rate [samples per second]

· Resolution [number of bits]

Table 4-1: Input Design Constraints stipulates that the resolution be at least 16 bits. We have set the resolution of the ADC to the minimum required resolution of 16 bits to maximize our system’s throughput. Also, we feel additional resolution above 16 bits is superfluous because the signal-to-quantization noise ratio (SQNR) is be well below the noise floor at that resolution.
[image: image39.jpg]Aln:0]
B[n:0]

—— s[n+1]
c[n]

- (4)—> s[n]
c[n-1]

gln]
pln]
Carry
Sum
Propagate
Generator
Generator
gl1]
1R R
gl0]

p[o]

- —>@—> s[1]

1] 4

s[0]

As outlined in the Section 2 - Technical Specifications, the information signal at the input of the ADC is centered at 20-MHz with a passband of 12-kHz. Figure 5.1-1 (not to scale) pictorially shows the Fourier transform of the received information signal. In the figure, Fc denotes the carrier frequency of the signal and BWI denotes the information bandwidth.

If we sample this signal with a sampling frequency of FS the frequency spectrum of the information signal is given by (5.1-1):
[image: image40.jpg][

[

RS E R

(5.1-1)
Where XS(f) is the frequency spectrum of Xa(f) after sampling. From (5.1-1) it is apparent that the Fourier transform XS(f) consists of a sum of magnitude-scaled replicas of Xa(f) sitting at integer multiples of FS.

To avoid aliasing one would sample this signal at least as fast as the Nyquist Rate, give in (5.1-2):

[image: image41.jpg]Cout o

An]

B[n]

Al

Bll]

Al0]

BI0]

S[n]

S[1]

S[0]

Cin

(5.1-2)
Where BW is the bandwidth of the modulated signal, BW = 20.006MHz in this case. After sampling, the signal would be demodulated using a complex multiplier followed by a lowpass filter before decimation and spectral analysis.

Because the cost of a 40-MHz, 16-bit ADC exceeds the allowed cost of 50 dollars (see Table 4.3) we have decided to approach the sampling problem from a different angle. Using a technique called bandpass sampling [2], we can sample at a rate significantly less than twice the carrier frequency and translate the carrier frequency to some intermediate frequency without the use of a mixer and without loosing any of the information signal. In bandpass sampling, the modulated signal is under-sampled at a rate FS to achieve frequency translation from the carrier frequency FC to an intermediate frequency FA via intentional aliasing. To efficiently perform the FFT, the carrier frequency FC = 20MHz should be translated to an intermediate frequency of 6kHz such that the information signal will fill the bandwidth between baseband and 12kHz. If we choose a sampling frequency of FS = 999.7KHz then according to (5.1-3) the carrier frequency FC = 20MHz will translate down to an intermediate frequency of FA = 6kHz as required by our application.

[image: image42.jpg]20 bieOutpur]
0 Disiay.
eutter
cutput i

FPETPEET

momEd At oR

16-bit nput
from ADC
Sample Cik |

(5.1-3)
In equation (5.1-3), floor(a) is the truncated portion of the argument a and rem(b,c) is the remainder after the division of b by c. With the intermediate frequency (IF) set to 6kHz, the modulation sidelobes that designate the information bandwidth range from baseband to 12kHz. To ensure that no portion of the information bandwidth of the signal will be folded on top of itself, and prevent interference, the conditions in equations (5.1-4) and (5.1-5) must be satisfied:

[image: image43.wmf]-Fc

Fc

BW

I

F [Hz]

X(f)

Figure 5.1-1: Pictorial representation of the Fourier transform

of the received information signal (not to scale)

(5.1-4)
[image: image44.wmf](

)

å

¥

-¥

=

-

=

k

S

a

S

S

kF

f

X

F

f

X

)

(

(5.1-5)
Clearly an intermediate frequency of FA=6kHz, an information bandwidth of BWI=12kHz and a sampling frequency of FS=999.7kHz satisfies (5.1-4) and (5.1-5). Bandpass sampling has two hardware requirements that must be satisfied to avoid distortion. One critical requirement is that the analog input bandwidth of the ADC must accommodate the carrier frequency of 20MHz, although its sampling frequency is much less. Also, a narrow bandpass filter centered at 20MHz with a steep rolloff is a requirement. This filter must attenuate all frequency energy outside the information bandwidth because all the frequency energy from DC to the carrier frequency will fold or alias into the resulting passband, thus affecting the SNR of the information band.

Table 5.1-1 presents the two design parameters for the ADC process along with the values we have selected for them.
	Table 5.1-1: Design Parameters for ADC

	Quantization Resolution
	16 bit

	Sampling Frequency
	999.7kHz

Decimation-Design Specifications
After sampling, our signal is represented by the sequence xs(n) with the spectrum XS(f). The spectrum XS(f) is continuous and periodic with a period equal to the sampling frequency. Because the sample rate is much higher than the bandwidth of the information, the information signal will only occupy a small fraction of the spectrum. To efficiently compute the fast Fourier transform of this 12kHz signal with a resolution of 5Hz, downsampling the signal sequence by an integer factor D is required such that the information band will occupy nearly one entire period of the spectrum. If we reduce the sampling rate simply by selecting every Dth value of the signal, all frequencies above FS/2D will fold into the information bandwidth. Therefore, to avoid unwanted aliasing, the sequence must be passed though a low-pass filter so that noise outside 12kHz will be attenuated before down-sampling. The process of low-pass filtering followed by down-sampling is known collectively as decimation.

Equation (5.1-6) provides a method to compute the value of D such that the information band will occupy as much of the spectrum as possible:

[image: image45.wmf]MHz

BW

F

S

012

.

40

006

.

20

*

2

*

2

=

=

³

(5.1-6)
Because forty-one is a prime integer, the decimation cannot be implemented in stages. For this reason, we have decided to down-sample by D=32. By choosing D=32 instead of D=41 we will be able to decimate the signal in stages while not increasing the complexity of the following FFT.

After the decimation process, the signal is given by (5.1-7):

[image: image46.wmf]î

í

ì

-

=

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

)

,

(

,

)

,

(

,

2

S

C

S

A

S

C

A

S

C

F

F

rem

F

F

odd

F

F

rem

F

even

then

F

F

floor

if

(5.1-7)
where lpf(a) is the lowpass filtering of a, with a passband of 12-kHz. The frequency domain representation of y(n) in terms of XS(f) is given in (5.1-8):

[image: image47.wmf]2

0

I

A

BW

F

-

<

(5.1-8)
Decimation-Design Solution
A Cascaded Integrator-Comb (CIC) decimator will be used decimate by a factor of 16. Because of the passband droop of the CIC, we will utilize an additional multirate FIR filter at the decimated sample rate to equalize the passband droop and decimate by an additional factor of 2.
The main function of the CIC filter is to lowpass filter the incoming signal, reduce the sampling rate (downsample), and keep the passband aliasing within its designated limits. With this in mind, a CIC filter can be broken down into three main parts: an integrator section, a decimation or rate change section, and a comb section as shown below in Figure 5.1-2. In the figure, z-1 is a unit delay element.

[image: image4.wmf]Downsample by

16

4-Stage Integrator Section

4-Stage Comb Section

x(

n

)

x(

16n

)

z

-1

z

-1

z

-1

z

-1

z

-1

z

-1

z

-1

z

-1

Figure 5.1-2: Four Stage Decimating

CIC

 Filter

The integrator stage will store each result from the previous summation and then sum it with the new sample of data at the 999.7kHz sampling frequency. The rate change section will divide the input frequency by 16 to arrive at 62.4813kHz. Finally the comb filter stage will subtract each preceding input from the current input.
The 4-stage integrator section has the transfer function given in (5.1-9):

[image: image48.wmf]2

2

S

I

A

F

BW

F

<

+

(5.1-9)

And the 4-stage comb section with the transfer function given in (5.1-10):
[image: image49.wmf]41

12

*

2

7

.

999

2

=

÷

ø

ö

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

=

kHz

kHz

floor

BW

F

floor

D

I

S

(5.1-10)
The comb section operates at the divided frequency resulting in smaller chip area and lower power dissipation. The CIC decimation filter can be viewed as a single high-sample-rate filter that precedes the rate change section having the transfer function:
[image: image50.wmf]n

r

r

x

pf

l

n

y

32

))

(

(

)

(

=

=

(5.1-11)
where z is a complex variable and R is the decimation ratio of the CIC filter. It can be seen that N poles at zero frequency (DC) are annihilated by N zeros. The result is that the transfer function is that of a four stage moving-average filter. The frequency response of the CIC filter can be expressed as:

[image: image51.wmf]÷

ø

ö

ç

è

æ

=

32

32

1

)

(

f

X

f

Y

S

 (5.1-12)
where f represents frequency and R represents the decimation ratio of the CIC filter. The frequency response is clearly that of a linear-phase filter with lowpass sin(Rx)/sin(x) characteristic. Evaluating the magnitude of the transfer function yields:
[image: image52.wmf]4

1

0

4

1

1

1

)

(

÷

ø

ö

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

å

-

=

-

-

-

R

k

k

R

z

z

z

z

H

(5.1-13)
Because the CIC filter will be followed by a multirate FIR filter that will downsample the signal by a factor of two, the decimation ratio of the CIC filter, R, is 16 in this case. Figure 5.1-3 graphically presents the frequency response of the CIC filter as a function of relative frequency.
[image: image5.jpg]Attenuation (dB)
&
o

-100

: Frequency Response of CIC Filter
T

-120
0

1.5 2 25 3 35
Frequency Relitive to Fs/R

Note that the frequency response has nulls at integer multiples of Fs/16, where Fs is 999.7kHz in this case. As a result, the frequency bands that are aliased into the desired baseband signal by the decimation operation are centered on nulls. This provides “natural” alias rejection. Figure 5.1-4a presents the passband of the CIC frequency response and Figure 5.1-4b shows the rejection band of the CIC frequency response.
[image: image6.jpg]5.1-4a: Passband Frequency Response of CIC Filter

Attenuation (dB)
o
T

2+
-251
-3 1 I Il Il Il 1 I i Il
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Frequency Relitive to Fs/R
5.1-4b: Rejection band Frequency Response of CIC Filter
0 T T T T T
m 50
=
c
kel
S-100
c
2
<
-150
Il I Il I Il Il Il
0.85 09 0.95 1 1.05 1.1 1.15

Frequency Relitive to Fs/R

Figure 5.1-4b shows that the worst case alias rejection is approximately 60dB. Figure 5.1-4a shows that the worst case passband distortion is approximately 2.5dB. This droop will be compensated for using a multirate FIR filter.
The method of filter design wherein poles and zeros are placed on the z-plane to shape the impulse response was used to effectively design a multirate filter that would equalize the passband and decimate by a factor of two. First, all poles were placed at the origin because of the problems that arise in implementation of IIR filters with fixed point manipulation. Next, the constraint that all zeros should be either real or occur in complex-conjugate pairs was placed on the system. This constraint was placed to ensure that the filter coefficients will be real.
With the previous constraints in mind, a Matlab program (see Appendix A) was written that varied the position (both magnitude and angle) of five zeros, with an additional zero with a magnitude of one, anchored at pi. For each combination of zero placement the frequency response of the combined CIC and FIR filter was computed and compared with the ideal frequency response. The ideal frequency response, in this case, is flat across the passband while attenuating higher frequencies significantly. For this ideal frequency response, the magnitude of the passband attenuation is not relevant so long as the attenuation of the higher frequencies is taken relative to the passband. There was a trade off in this Matlab program between computation time and resolution of the grid over which the zeros are varied. For a low resolution grid, the computation time is short but the filter coefficients are not optimized well. For a high resolution grid, the computation becomes excessively long very quickly but the filter coefficients are very near optimal. A compromise was meet with a rather course grid for the first iteration, then the grid area was made smaller, around the best previous combination of zero placement, but with a much finer grid. The final FIR filter coefficients from the program were taken few iterations and approximately 20 hours of computation time. The after running simulations with the Matlab program’s filter coefficients it was apparent that the FIR overcompensated for the passband droop by about 2dB. Consequently, the coefficients were adjusted to reduce the amplification of the passband at high frequencies. This final transfer function of the FIR filter is shown in equation (5.1-14):
[image: image53.wmf](

)

4

sin

sin

)

(

÷

ø

ö

ç

è

æ

=

R

f

f

f

H

p

p

(5.1-14)
The pole-zero pattern for the FIR filter is presented in figure 5.1-4a and its corresponding frequency response is presented in figure 5.1-4b.
[image: image7.jpg]=]
3

o

Imaginary Part
<)
3

Signal Intensity
o = &

]
S

Figure 5.1-4a: Z-plane Zero-Pole Plot of FIR

Figure 5

o
@
IS L
(@]
@)
L Il L
1 0 1
Real Part

.1-4b: Frequency Response of FIR Filter

2 3 4

Frequency [Hz]

From figure 5.1-4a one can make several observations that should be made to verify that the original constraints laid out for the FIR:

· All poles are placed at zero
· All zeros are either real or in complex-conjugate pairs

· One zero with unit magnitude is anchored to pi

· Worst case alias rejection of approximately 11dB

· Equalization of passband by approximately 1.5dB

Equalization of the passband by 1.5dB leaves resultant passband droop of 1dB. This is satisfactory for our application, but if it were not, one could design a higher order FIR filter to further equalize the passband.

The FIR filter is must also downsample by a factor of two. How this is accomplished is described at the end of the next section Decimation-Implementation Details.

Decimation-Implementation Details
The top-level design of the decimation module is now complete. To implement the design into hardware, however, one must consider the required clocking rate and the effects of fixed point, two’s complement manipulation. For example, the number of bits at the output of an adder will be equal to the sum of the number of bits at the input plus one. This section addresses the bit level design of the system such that the bit width is controlled with no overflow or underflow and presents the appropriate clock rates for the various stages of the filter.
To determine the required bus width of the CIC decimator, the DC gain G must first be determined. For CIC decimators, the gain at the output of the final comb section is:

[image: image54.wmf]ï

î

ï

í

ì

-

£

£

÷

ø

ö

ç

è

æ

-

-

=

otherwise

L

n

n

L

n

w

,

0

1

0

,

1

2

cos

1

2

1

)

(

p

 (5.1-15)

With two's complement arithmetic, this result is used to calculate the number of bits required for the last comb due to bit growth. If Bin is the number of input bits (16 bits in this case), then the number of output bits, Bout, is:

[image: image55.wmf]k

N

p

w

2

=

(5.1-16)
It also turns out that Bout bits are needed for each integrator and comb stage. It should be noted that a single integrator stage is, by itself, unstable. The comb stages will, however, compensate for the integrator stages. In implementation, when in integrator saturates to the highest or lowest possible 32 bit value, the carry out should be discarded. The input to the first integrator needs to be sign extended to Bout bits, but LSB's can either be truncated or rounded at later stages.
The clock rate for the four stage integrator synchronized with the sampling rate of the ADC. In this case the clock rate should be 999.7kHz as specified in Table 5.1-1. The clock rate for the four stage comb filter should be the sample frequency divided by sixteen. In this case the clock rate should be 62.4813kHz. This clock rate, seems rather esoteric and, as a result, difficult to obtain. This clock rate, however, is easily obtained with a simple clock divider that divides the clock signal that is synchronized with the ADC by 32.
In summary, the input to the CIC filter must be sign extended from 16 bits to 32 bits. All adders and busses within the CIC filter must be 32 bits wide. The clock signal into the integrators should be 999.7kHz and the clock signal into the combs should be 62.413kHz.
The output from the CIC will have a bit width of 32. Before entering the FIR filter, the bit width is reduced to 16 bits by simply windowing away the 16 most significant bits and discarding the 16 least significant bits. This has the effect of dividing the output of the CIC by 216 and rounding the result towards negative infinity. Extensive testing has been conducted to ensure that underflow will not destroy the input signal. This testing will be presented in the next section.
The FIR filter has been implemented in its direct form realization with a downsample or rate change of two preceding the multipliers but after the delay elements (see Figure 5.1-5). We designed the FIR filter with the rate change in this place to reduce power consumption and chip space. The FIR prior to the rate change should be clocked at the same rate as the comb stage of the CIC filter. The FIR after the rate change should be clocked at half the frequency of the comb stage of the CIC filter (31.2406kHz in this case).
The bus into the FIR filter is 16 bits wide. All delay elements should be able to accommodate all 16 bits. The bus at the output of all multipliers and adders should be 26 bits wide. The filter coefficients are represented as a ten bit two’s complement number by first multiplying by 29-1 and then rounding. See figure 5.1-5 for the scaled and rounded filter coefficients.
The 26 bit output of the FIR is reduced to a 16 bit number by simply taking the 16 most significant bits and discarding the 10 least significant bits. The effect of this scheme of bit reduction is to divide the output of the FIR by 210.
[image: image56.wmf]D

F

F

f

S

p

p

w

2

2

=

=

Figure 5.1-5 serves to summarize the entire decimation design. Shown in the figure is the:

1. 4 stage integrator filter

2. Rate change of 16
3. 4 stage comb filter
4. Normalization by 216
5. FIR filter (internal rate change of 2)

6. Normalization by 210
The decimation module outputs a 16 bit number at 32(s intervals. Now that the signal has been sampled and decimated, it is ready to be applied to the spectrum analyzer block of the design.
Spectrum Analysis-Design Specifications
We are now ready to perform a real-time FFT analysis on the signal. To compute the exact spectrum of the signal, the values of that signal would have to be known for all time. To implement a real time FFT, however, it is necessary to approximate the signal from a finite data record. Limiting the duration of the sequence to L samples is equivalent to multiplying our signal y(n) with a rectangular window of length L. The effect of the rectangular window is to cause power from a single frequency to leak out into the entire frequency range. To reduce the effects of the leakage, it is possible to limit the duration of the signal y(n) to L points by multiplying y(n) with a Hanning window w(n), defined in (5.1-17):

[image: image57.wmf]ND

kF

F

S

=

(5.1-17)
The Hanning window reduces the sidelobes (leakage) significantly, but the main lobes are approximately twice as wide as for the rectangular window. The increase in main lobe width has the affect of reducing the spectral resolution. At the high resolution that is required for our application, the Hanning widow increases the hardware complexity significantly while not offering much increase in performance. For this reason, we have decided to limiting the duration of the sequence to L samples by multiplying the signal y(n) with a rectangular window of length L given in (5.1-18):
[image: image58.wmf]ND

F

k

F

S

=

¶

¶

(5.1-18)

The resulting finite length is given by
[image: image8.wmf])

(

ˆ

n

x

:

[image: image59.wmf]6249

5

*

32

10

*

7

.

999

)

(

)

(

3

=

ú

ú

ù

ê

ê

é

=

ú

ú

ù

ê

ê

é

D

D

=

F

D

k

F

N

S

(5.1-19)

To calculate the number of points required to compute the FFT of our 12kHz signal with a resolution of 5Hz we begin with the basic equation relating the continuous frequency of spectrum of the infinite length signal
[image: image9.wmf])

(

n

x

with the discrete frequency spectrum of the finite length signal
[image: image10.wmf])

(

ˆ

n

x

:

[image: image60.wmf])

1

2

(

ˆ

)

(

)

2

(

ˆ

)

(

2

1

+

=

=

n

x

n

g

n

x

n

g

(5.1-20)
where N is the number of points taken in the FFT, ω is the radian frequency of the spectrum of x(n), and k is any integer from zero to N-1. Also we know from sampling theory that:

[image: image61.wmf])

(

)

(

)

(

2

1

n

jg

n

g

n

g

+

=

 (5.1-21)
where F, in this case, represents the frequency of the signal, FS represents the sampling frequency and D represents the decimation factor. Equating (5.1-20) and (5.1-21) and solving for F yields:

[image: image62.wmf]4095

,...,

1

,

0

)

(

)

(

)

(

4095

,...,

1

,

0

)

(

)

(

)

(

2

2

1

2

2

1

=

-

=

+

=

+

=

k

k

G

W

k

G

N

k

X

k

k

G

W

k

G

k

X

k

N

k

N

(5.1-22)
Differentiating both sides of (5.1-22) with respect to k yields:

[image: image63.wmf](

)

4

1

1

)

(

-

-

=

z

z

H

C

(5.1-23)
Solving (5.1-23) for N yields the equation for determining the number of points required for a spectral resolution of ΔF = 5Hz for a sampling frequency of FS=999.7kHz and a decimation factor of D = 32.

[image: image64.wmf]4

1

1

1

)

(

÷

ø

ö

ç

è

æ

-

=

-

z

z

H

I

points

(5.1-24)

Although 6249 is the smallest possible number of points needed to achieve 5Hz resolution over a 12kHz bandwidth, we have chosen to window 8192 points so that a radix-8 FFT algorithm can be used to compute the frequency spectrum. The resulting data sequence, which will be transformed, is given in (5.1-25):
[image: image65.wmf](

)

(

)

[

]

4

1

2

sin

2

sin

ï

þ

ï

ý

ü

ï

î

ï

í

ì

=

-

-

f

R

j

j

e

f

fR

e

H

p

w

p

p

(5.1-25)

Assuming that
[image: image11.wmf])

(

ˆ

n

x

is a real-valued sequence, we can obtain the 8192-point FFT of the sequence from the computation of one 4096-point complex FFT with some additional post processing. To do this we first define:

[image: image66.wmf]4

4

16

=

=

R

G

(5.1-26)
Now if we let g(n) be the 4096-point complex-valued sequence given by:

[image: image67.wmf]é

ù

é

ù

bits

B

R

B

in

out

32

16

16

log

4

log

4

2

2

=

+

=

+

=

(5.1-26)
We can use the decimation-in-frequency FFT algorithm to compute the 4096-point FFT of g(n). With the FFT of g(n) calculated, and denoted by G(k), we can recover the FFT of the original sequence, simply apply (5.1-27) and (5.1-28):

[image: image68.wmf](

)

(

)

(

)

(

)

6

5

4

3

2

1

603367

.

0

603367

.

0

4

3

4

3

033635

.

193582

.

278341

.

44742

.

611503

.

55369

.

1

1

31

.

31

.

35

.

1

)

(

-

-

-

-

-

-

-

-

-

+

-

-

+

+

=

-

-

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

z

z

z

z

z

z

e

z

e

z

z

z

e

z

e

z

z

H

i

i

j

j

p

p

(5.1-27)
[image: image69.jpg]Four Stage Integrator Filier I Four Stage Comb Filter I
Digital Signal . -
from ADC | F Divide By
(sarnplect i
999 7kHz)

FIR Filter I

(5.1-28)

where
[image: image12.wmf]k

N

W

2

 is exp(-jπk/N)= exp(-jπk/4096). Thus we have computed the FFT of an 8192-point real sequence from one 4096-point FFT with some additional computation as indicated by (5.1-26), (5.1-27), and (5.1-28).

Spectrum Analysis-Design Solution

The fast Fourier transform of the 8192-point data set will be accomplished with a radix-8 decimation-in-frequency algorithm. The decimation-in-frequency algorithm is obtained by using the divide and conquer method.
Because we an N-point FFT can be broken into factors of eight we can define:
[image: image70.wmf]î

í

ì

-

£

£

=

otherwise

L

n

n

w

,

0

1

0

,

1

)

(

(5.1-29)
Now we take
[image: image13.wmf]1

0

),

(

ˆ

-

£

£

N

n

n

x

 and store it as a two-dimensional array indexed by l and m, where
[image: image14.wmf]1

8

/

0

-

£

£

N

l

 and
[image: image15.wmf]7

0

£

£

m

 with the mapping:

[image: image71.wmf])

(

)

(

)

(

ˆ

n

w

n

x

n

x

=

 (5.1-30)
This mapping stores the first N/8 elements of
[image: image16.wmf])

(

ˆ

n

x

 in the first column of the array, the next N/8 elements in the second column, and so on. We can also store the computed DFT values in a similar arrangement, where the index k is mapped to the pair of indices (p,q) where
[image: image17.wmf]1

8

/

0

-

£

£

N

p

 and
[image: image18.wmf]7

0

£

£

q

 with the mapping:
[image: image72.wmf]î

í

ì

£

£

=

=

otherwise

n

n

w

where

n

w

n

x

n

x

,

0

8191

0

,

1

)

(

)

(

)

(

)

(

ˆ

(5.1-31)

Using these mappings yields:
[image: image73.wmf][

]

[

]

)

(

)

(

2

1

)

(

)

(

)

(

2

1

)

(

*

2

*

1

k

N

G

k

G

j

k

G

k

N

G

k

G

k

G

-

-

=

-

+

=

(5.1-32)
but

[image: image74.wmf]8

8

N

LM

N

=

=

(5.1-33)
and
[image: image75.wmf]l

m

N

n

+

=

8

(5.1-34)
giving
[image: image76.wmf]q

p

k

+

=

8

(5.1-35)
The expression in (5.1-35) involves the computation of DFTs of length 8 and length N/8. Consequently, the N-point DFT is decimated into eight N/8-point DFTs. By applying equation (5.1-35) to the eight N/8-point DFTs, the N/8 point DFTs can be broken into N/64 point DFTs. This can be repeated until finally the DFT is broken into N/8 8-point DFTs. Hence we have a radix-8 decimation-in-frequency FFT algorithm.

To apply this radix-8 DIF FFT, we need log8 4096, or four, stages. From equation (5.1-35) one can see that each stage must consist of:

1. Point reorder

2. 512 eight-point FFT computation

3. Point reorder

4. Multiplication by complex twiddle factor

The block diagram of the 8192-point FFT described above is presented in figure 5.1-6.
[image: image77.wmf](

)

å

å

=

-

=

÷

ø

ö

ç

è

æ

+

+

=

7

0

1

8

/

0

8

8

)

,

(

)

,

(

m

N

l

l

m

N

q

p

N

W

m

l

x

q

p

X

[image: image78.wmf](

)

8

8

8

8

Nmq

N

Nmp

N

lq

N

lp

N

l

m

N

q

p

N

W

W

W

W

W

=

÷

ø

ö

ç

è

æ

+

+

Data will enter the FIFO from the decimation module and be converted from serial to 4096 complex as described above. The data will then be reordered, applied to 512 eight point FFTs, and reordered again before being multiplied by a complex twiddle factor set. The data will undergo 3 complete passes, before being routed to the post processing midway through the fourth pass. The twiddle factors may be stored in memory and accessed for multiplication. The order they are accessed is different for each pass.

In the figure you should notice the two bit reorders, the 512 eight point FFT module and the multiplication by twiddle factor. Each bit reorder and twiddle factor multiplication is described in the text documents generated by the Matlab code attached and Appendix A.
The following is a description of each text file and its use:

· Veriloga.txt describes the operation of the first point reorder. Each column of the text file corresponds to a different pass. If the data input to the reorder for the first pass is stored in an array a=[a(0), a(1), a(2),…, a(4094), a(4095)] and the first column has the information i=[i1, i2, … , i4094, i4095] then the resulting output should be in the order b=[a(i1), a(i2), a(i3),…, a(i4094), a(i4095)]. Veriloga.txt has 4 columns, each corresponding to a single pass.
· Verilogb.txt describes the operation of the second point reorder. This text file is in the same format as Veriloga.txt, but with only three columns. There are only three columns because data will only be sent through the second reorder three times.
· Verilogc.txt describes the operation of the post processing point reorder. The format is the same as Veriloga.txt, but with only two columns. The first column is for the top reorder and the second column is for the bottom reorder.

· Verilogtf.txt stores a bank of the twiddle factors. The first column is the real part of the twiddle factor stored in twenty bit 2’s complement format. The second column is the imaginary part of the twiddle factor stored in twenty bit 2’s complement format.

· Verilogto.txt describes which twiddle factor should be multiplied with which data point.

· Verilogtf2.txt stores a bank of the twiddle factors for use in the post processing stage of the FFT engine. The data is stored in the same format as Verilogtf.txt.

· With the sampling, decimation, and frequency analysis of the system outline, we are ready present simulations of the system before presenting the hardware implementation proposal.

The normalization is required to implement a fixed point system. The data input to the FIFO is sign extended to 20 bits. The bit width stays the same during reorders and enters the 512 eight-point FFT module as a set for 20 bit numbers. The FFT module has internal normalization so that the output number is also 20 bits. The output of the twiddle factor multiplication is 40 bits. The output of the multipliers is normalized so that it can be fed back into the first reorder. After the first pass the output is divided by 214 and then the twenty least significant bits are windowed. After the second and third pass, the output is divided by 218 and then the twenty least significant bits are windowed. In the post processing, a normalization of two follows all summations and a normalization of 218 follows the output of the multiplier so that the bit width will be kept to twenty through out.
Spectrum Analysis-Eight Point FFT Design Solution

The heart of the FFT engine is the 512 eight point FFT bank. Because of the number of eight point FFTs and the complexity of each FFT, this module could possibly be very costly in terms of speed and chip space. Consequently, we have taken great care to design an efficient realization of the eight point FFT.
The eight point fast Fourier transform algorithm can be implementing in three stages:

1. Two 4-point FFTs

2. Multiplication by complex exponentials

3. Four 2-point FFTs

Figure 5.1-7 below serves to illustrate graphically the algorithm. Because this algorithm is not symmetric, the input must always be in the order {0,2,4,6,1,3,5,7} and the output will always be in sequential order. The reorder can be accomplished by simply hardwiring the input to the appropriate inner FFT position.

[image: image19.wmf]1

1

1

1

1

1

1

-

j

-

1

-

1

-

1

-

1

j

1

j

-

j

1

1

1

1

1

1

1

-

j

-

1

-

1

-

1

-

1

j

1

j

-

j

exp

(-

j

p

/4)

exp

(-

j3

p

/4)

-

j

-

1

-

1

-

1

-

1

x(7)

x(5)

x(3)

x(1)

x(6)

x(4)

x(2)

x(0)

X(0)

X(7)

X(6)

X(5)

X(4)

X(3)

X(1)

X(2)

[image: image79.wmf]lp

N

lp

N

mq

Nmq

N

Nmp

N

W

W

and

W

W

W

8

/

8

8

8

,

,

1

=

=

=

In this figure, the dots represent summations. This 8-point FFT algorithm (i.e. 4-point followed by 2-point) is not readily available in literature (at least we couldn’t find it), so we had to develop it ourselves. The derivation follows.

[image: image80.wmf]å

å

-

=

=

þ

ý

ü

î

í

ì

=

1

8

/

0

8

/

7

0

8

)

,

(

)

,

(

N

l

lp

N

m

mq

lq

N

W

W

m

l

x

W

q

p

X

The DFT of an 8-point complex data sequence is defined as (5.1-36):

(5.1-36)

where X(k) is the DFT of the discrete sequence x(n) and W8=exp(-2π/8). If we make the change of variable:

[image: image81.wmf]å

å

=

=

-

=

=

7

0

8

7

0

8

2

)

(

)

(

)

(

n

kn

n

kn

j

W

n

x

e

n

x

k

X

p

(5.1-37)

then (5.1-36) becomes:

[image: image82.wmf]3

0

1

0

,

4

3

0

1

0

,

2

£

£

£

£

+

=

£

£

£

£

+

=

q

and

p

q

p

k

m

and

l

m

l

n

(5.1-38)

Using the symmetric property (
[image: image20.wmf]k

k

W

W

8

4

8

-

=

+

) and periodicity property (
[image: image21.wmf]k

k

W

W

8

8

8

=

+

) of the phase factor W8 we derive (5.1-39):

[image: image83.wmf]å

å

å

å

=

=

=

=

+

+

=

=

1

0

3

0

8

3

8

4

8

12

8

1

0

3

0

)

4

)(

2

(

8

)

,

(

)

,

(

)

,

(

l

m

lq

pl

mq

mp

l

m

l

m

q

p

W

W

W

W

m

l

x

W

m

l

x

q

p

X

(5.1-39)

Equation (5.1-39) is basis of the algorithm presented in the figure above. Equation (5.1-40) expands equation (5.1-39) to make the algorithm clearer:

[image: image84.wmf]å

å

=

=

þ

ý

ü

î

í

ì

ú

û

ù

ê

ë

é

=

1

0

2

3

0

4

8

)

,

(

)

,

(

l

lp

m

mq

lq

W

W

m

l

x

W

p

q

X

(5.1-40)

The two 4-point DFTs can be accomplished by performing the additions in two steps. This reduces the number of additions per butterfly from 12 to 8. This can be accomplished by expressing the operation in the form of a matrix:

[image: image85.wmf]å

å

=

=

+

=

3

0

4

2

8

3

0

4

)

,

1

(

)

,

0

(

)

,

(

m

mq

p

q

m

mq

W

m

x

W

W

W

m

x

p

q

X

(5.1-41)
We can express (5.1-41) as the product of two matrices as follows:
[image: image86.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

1

1

1

1

1

1

1

1

1

1

1

1

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

3

2

0

q

F

W

q

F

W

q

F

W

q

F

W

j

j

j

j

q

X

q

X

q

X

q

X

q

N

q

N

q

N

N

(5.1-42)

The final eight point FFT schematic is given in figure 5.1-8.
[image: image87.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

0

1

0

1

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

3

2

0

q

F

W

q

F

W

q

F

W

q

F

W

j

j

q

X

q

X

q

X

q

X

q

N

q

N

q

N

N

The multiplication by negative j is accomplished by simply bit reversing the real part and then flipping the real and imaginary part. Simply bit reversing has the effect of multiplying by negative one and subtracting one. This subtraction of one is not desired, but we have implemented it this way anyways for two reasons:
1. Eliminates bit growth

2. Less complexity than a multiplication by negative one
The error introduced, if the data point uses the full range of quantization, is insignificant (approximately 1.9*10-6).

We will approximate the multiplication by exp(-j*pi/4) using the diagram shown in figure 5.1-9.

[image: image88.wmf]exp

(-

j

p

/4)

exp

(-

j3

p

/4)

x(7)

x(5)

x(3)

x(1)

x(6)

x(4)

x(2)

x(0)

X(0)

X(7)

X(6)

X(5)

X(4)

X(3)

X(1)

X(2)

-1

-1

-

j

j

-1

-1

-1

-

j

j

-1

-

j

-1

-1

-1

-1

[image: image89.wmf]+

+

+

+

+

2

-4

2

-3

2

-1

2

-6

2

-8

2

-9

+

+

+

+

+

+

2

-4

2

-3

2

-1

2

-6

2

-8

2

-9

+

a

b

Real Part

Imaginary Part

-1

Using this diagram, we can avoid any multiplications in the eight point FFT. Thus the speed and complexity of the entire system has been reduced.
[image: image90.wmf]2

2

2

2

4

j

e

j

-

=

-

p

The operation of the diagram can be seen by first expressing the multiplication by exp(-j*pi/4) as:

(5.1-43)
If we wish to multiply a point P=a+jb by exp(-j*pi/4), then we have:
[image: image91.wmf])

(

2

2

)

(

2

2

2

2

2

2

)

(

b

a

j

b

a

j

jb

a

+

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

+

(5.1-44)

but,

[image: image92.wmf](

)

9

8

6

4

3

1

2

2

2

2

2

2

2

2

-

-

-

-

-

-

+

+

+

+

+

@

(5.1-45)

so,

[image: image93.wmf](

)

(

)

)

(

*

2

2

2

2

2

2

)

(

*

2

2

2

2

2

2

2

2

2

2

)

(

9

8

6

4

3

1

9

8

6

4

3

1

b

a

j

b

a

j

jb

a

+

+

+

+

+

+

+

-

+

+

+

+

+

=

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

-

-

-

-

-

-

-

-

-

-

-

(5.1-46)
The approximation shown in figure 5.1-9 was derived from equation (5.1-46).
Similarly, the multiplication by exp(-j*3pi/4) will be approximated using the diagram in figure 5.1-10.

[image: image94.wmf]+

+

+

+

+

2

-4

2

-3

2

-1

2

-6

2

-8

2

-9

+

+

+

+

+

+

2

-4

2

-3

2

-1

2

-6

2

-8

2

-9

+

a

b

Real Part

-Imaginary Part

-1

[image: image95.wmf][

]

)

cos(

)

cos(

2

1

)

cos(

)

cos(

b

a

b

a

b

a

+

+

-

=

The derivation of the figure 5.1-10 is similar that the derivation of figure 5.1-9.
Thus we have created an eight point FFT using zero multipliers and only eight complex adders and twenty-four real adders. The system has now been completely described and we are ready to present the Matlab simulation. This will be done in the next section.

Matlab Simulations
Comprehensive Matlab models were created to simulate the actually operation of the system once implemented in hardware. Because the models simulated the actual hardware implementation, the results of the simulations were used extensively to debug the Verilog code as it was being generated. Many functions where created to use model the bit-level operation of the system.
The Matlab simulations of the decimation filter were created to model the bit-level operation of the system. With this bit level model of the system, we were able to determine the required resolution for each stage in the decimation filter (previously described). Please see Appendix A for the code used to generate these simulations.
To show the operation of the simulation, we input a time domain signal to the simulation at frequencies at ranging from 19.994-20.006MHz in increments of 1kHz. Figure 5.1-11a and 5.1-11b show the results of the decimation and FFT simulation in the time domain and frequency domain. We would like to emphasize that these results are a simulation, in Matlab, of the actual operation of the entire system once implemented in hardware. Figure 5.1-11c and 5.1-11d are “ideal system” outputs. These plots were created with ideal Matlab functions such as “decimate” and “fft.”

[image: image22.jpg]5.1-11a: System Simulated Output in Time Domain 5.1-11b: System Simulated Output in Frequency Domain
1 1

08 0.8
06 Z
] i)
§ 506
é‘ 04 (::
< 02 504
7}
0 @ 0.2
-0.2 0
1.8 2 22 24 0 2000 4000 6000 8000 10000 12000
Time [ms; Frequency [Hz]
5.1-11c: Ideal System Output in Time Domain 5.1-11d: Ideal System Simulated Output in Frequency Domain
1 1
08 0.8
2
06 k)
g % 06
504 =
£ 204
o2 =
02
0 jt
0 2000 4000 6000 8000 10000 12000
Frequency [Hz]

From Figure 5.1-11b it can be seen that there are frequency peaks at every 500Hz across the 12kHz bandwidth. Notice the discrepancy between our signal and the ideal signal in the time domain. This difference is mainly due to a phase shift. In the frequency domain, one can see that the figures are very similar. The 1dB pass band droop can be observed at high frequencies. The simulations show that our proposed design will operate correctly in the presents of no noise.

To include the effects of Additive White Gaussian Noise (AWGN) and strong signals outside the information bandwidth the analog filters, which are in the front end of the weak signal receiver, must be modeled. The next section discusses the development of the filter models.
Analog Filters

In our simulation of the input signal that is seen by the ADC, we must simulate the analog circuitry before the converter. The signal, which is somewhere in the 144-148MHz frequency band, is first received by an antenna. It is then filtered to reduce the frequency range outside of the 144-148MHz band. These filters reduce the signal by 60dB/10MHz on the low side of the band and by 30dB/10MHz on the high side of the band. Then the signal is mixed down to an intermediate frequency of 20MHz where it is filtered again. This filter keeps a bandwidth of 12kHz with a roll off by 30dB/5kHz on the high side and 15dB/5kHz on the low side. The signal then leaves the analog domain and enters the digital domain through an ADC converter for digital processing.

To simulate these filters we chose to use the Matlab signal processing toolbox. The Matlab code can be found in the Appendix A. Working with a sample rate of approximately 2GHz to simulate the analog signal, Additive White Gaussian Noise (AWGN) is added to the input signal at the correct SNR. The filters were created by combining a low pass and a high pass filter. The filter’s settings were input into the filter design tool within Matlab and it produced the appropriate filters. It yielded a drop of about 6dB in the passband. The frequency response of the first filter can be seen below:

[image: image96.wmf](

)

å

¥

-¥

=

-

=

k

S

a

S

S

kF

f

X

F

f

X

)

(

The next stage in the analog processing is mixing the signal down to the 20MHz intermediate frequency. This is accomplished in Matlab by multiplying the signal by the difference of the two frequencies as demonstrated by equation (5.1-47):

[image: image97.wmf]MHz

BW

F

S

012

.

40

006

.

20

*

2

*

2

=

=

³

(5.1-47)

To mix a signal down, one must select a cosine frequency that properly mixes the signal. For example, if a signal is at 144MHz and one wants to mix it to 20MHz, a cosine of 124MHz should be used; however, as can be seen from the above equation, it also mixes it up to 268MHz. A simple low pass filter will eliminate the high frequency leaving only the 20MHz component. This filter reduced the passband by about 2dB. The response of such a filter can be seen in Figure 5.1-13 below. It is clear that the 268MHz component is reduced by over 100dB.

[image: image98.wmf](

)

å

¥

-¥

=

-

=

k

S

a

S

S

kF

f

X

F

f

X

)

(

[image: image23.emf]0 1 2 3 4 5 6 7 8 9 10

x 10

8

10

-30

10

-25

10

-20

10

-15

10

-10

10

-5

10

0

Frequency [Hz]

Intesity

Figure 5.1-6: Mixer Lowpass Filter

The next stage in the simulation involves filters around the 20MHz Intermediate Frequency (IF). Since the sample rate is at 2GHz and there is very little outside the 20MHz range, the data is decimated to make construction of the filters easier. The decimation factor is 25 making the sample rate now equal to 80MHz. The filters around the 20MHz signal are once again generated using the Matlab signal processing toolbox. The resulting filter reduced the passband by about 0.6dB. The response is shown in Figure 5.1-14 below.

[image: image99.wmf]MHz

BW

F

S

012

.

40

006

.

20

*

2

*

2

=

=

³

[image: image24.wmf]1.985

1.99

1.995

2

2.005

2.01

2.015

x 10

7

10

-35

10

-30

10

-25

10

-20

10

-15

10

-10

10

-5

10

0

Frequency (Hz)

Figure 5.1-7: 12Khz Bandpass Filter centered at 20Mhz

After we attempted to simulate the filter program, we found that the simulation requires excessive time to execute. As a result, instead of executing it real time, we decided that we would pre-generate the noise and add the signal to the resulting filtered noise.

The final program is modified by a number that determines how many runs it should execute. Each run simulates 150μs. By saving the state of the filters after each run and restoring those states for the next run, the filters can be operated on segments of the data and achieve the same results produced by un-segmented data. This allows the computer to generate 1.5 seconds of noise without the need for more than 24Gbytes of memory.

At the end of each run, the signal is sampled at 999.7kHz and output to a binary file. The sampling is simply taking every 80th point to reduce the approximately 80MHz signal down to 999.7kHz. No filtering is performed here as we are simulating the Analog to Digital Converter.

The effects of filtered AWGN and strong out-of-band signals have not yet been incorporated into the system simulations. The next step would be to simulate the system in the presence of filtered AWGN. The next section of this paper will present hardware solutions for the system design.

5.2 Hardware Design Solutions
For a complete hardware solution, the analog signal must be converted to a digital signal via an analog-to-digital converter (ADC) and then processed through the decimation and FFT modules before the results are displayed.

ADC Selection

In order to achieve the same results obtained in simulation, the ADC had to meet certain requirements concerning speed and accuracy. The device must be capable of taking 999,700 samples per second with 16-bit resolution and be commercially available. Several ADC’s were considered for the implementation of our design each with their own trade-offs between speed, cost, and accuracy.

The AD7677 was determined to be the best match for this project because of its high speed and accuracy combined with a low cost. At $40 per unit this device provides 16-bit resolution at one million samples per second. Additional benefits of the AD7677 include its low power consumption and ease of implementation with the selected FPGA. The following table summarizes the requirements and features of the ADC.

	Table 5.2-1: Analog to Digital Converter

	
	Design Requirements
	Features of AD7677

	Accuracy
	16 bit resolution
	16 bit resolution

	Speed
	999.7 kSPs
	1 MSPs

	Cost
	<$100
	$39.76 in 1,000 piece quantities

	
	
	

	
	
	single voltage supply

	Additional Features
	
	low power consumption (115mW)

	
	
	easy to interface

Several other considerations involving the ADC have also been made. We have decided that the ADC should be operated between -2.5 and 2.5 volts. This may require the input to the ADC to be amplified in order to have the maximum possible voltage swing and thus providing the highest possible accuracy. We have also decided that the output should be taken in two’s complement rather than in straight binary. This is an option that is provided by the AD7677 and seems to be more suiting for our needs. The final consideration is the possible need for an external clock. Even though the AD7677 provides an internal clock, it may be necessary for an additional clock signal to be provided to achieve the exact sampling rate required. This most likely is not the case but Raytheon should be aware of this possibility. The AD7677 is merely a suggested component and Raytheon should feel free to substitute in any ADC capable of producing similar results into the design.

Hardware Design Summary

To implement our design in hardware, we used Verilog Hardware Descriptive Language to model the behavior and structure of our design in a hierarchy of hardware modules, each possessing a specific function (or group of functions) interlinked with the rest of the system. To verify each module, a test bench was also built in Verilog to be implemented with the module using Cadence Verilog XL simulation tools. Once the design passes all tests it is ready for synthesis to the targeted FPGA via the software package that accompanies the device.

Design Strategy

In the conception of our hardware design we made several decisions to promote the simplicity of the design while maintaining the integrity of the final goal. Instead of beginning by attempting to realize the best solution on the first attempt, we focused our efforts towards developing a working model that meets all of the design requirements while preparing the design to be reduced to an optimized solution. Once this solution has been completed, tested, and demonstrated, addition analysis can begin to optimize the solution on the most economically efficient device without sacrificing the performance specifications already attained.

There were several key simplifying factors used to generate the first realization. Most helpful was the use of fixed-point numbers (as opposed to floating-point). Floating-point arithmetic is very taxing to hardware systems require much larger amounts of logic, power, and execution time compared to fixed-point numbers. Because the information our system is processing is more concerned with the relationship between the other data points than the actual values, the use of a fixed-point system could greatly reduce the complexity and processing time of our design without sacrificing the integrity of the information.

Another helpful strategy we employed was the development of reusable modules of similar functions. Although application specific module designs will provide a better realization, using a single module to perform many related tasks allows system improvements to be implement across the system quickly and effectively. Therefore when designing our high-level processing modules and arithmetic modules, the same module was used when possible with different control settings. In this way, an improvement to the realization of a complex multiplication, for example, could be carried across all stages of the design using this strategy. In the reduction of the design to the optimized solution, each instantiation of these modules should be tweaked to the optimal structure for the specific task, however using more general modules in the initial design stage allows for rapid changes to be made and tested with minimal effort.

An important strategy in the development of our hardware design was the use of a hierarchical module design structure (see figure 5.2-1 below). This design strategy allows large system tasks to be broken into several smaller segments making the generation, testing, and optimization less cumbersome throughout the design process. The use of this technique also allows each module to be dedicated to a specific level of processing presenting an organized system for design realization and optimization.

System Overview

As previously mentioned the scope of our design project begins at the digital sampling of the analog signal and concludes with the transmission of the resulting data for display. Following is a general description of the data path followed between these two points.

[image: image100.wmf]î

í

ì

-

=

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

)

,

(

,

)

,

(

,

2

S

C

S

A

S

C

A

S

C

F

F

rem

F

F

odd

F

F

rem

F

even

then

F

F

floor

if

Our system will begin by taking digital samples of the analog signal at ~1MHz with a resolution of 16-bits. To ensure efficient usage of our information bit-width, a variable amplifier will adjust the signal to ensure maximum usage of our bit-width. The clock to the ADC will also be input to the FPGA-SA for use in the decimation block. The data will be placed on the input data bus of the FPGA-SA at the rising-edge of the sample clock and latched for processing by the decimation block on the falling-edge. This data will the be processed through the integrating and combing filters described in the decimation process before being applied to a FIR filter. During the course of movement through the decimation block, the data is down-sampled by a total factor of 32, therefore at every 32nd sample clock-cycle; the 20-bit output from the FIR will be latched serially to the 20-bit by 8192-level first-in first-out buffer (FIFO). It should be noted that this process runs independently of the rest of the system allowing the exiting data of the FIFO to be discarded.

The next processing block in the data procession is the Fast Fourier Transform (FFT) block. This block will sample all 8192 points of the FIFO in parallel as inputs for processing. For design optimization purposes, the 8192 20-bit points are combed into 4096 40-bit points with the first 20-bits containing the real part and last 20-bits the imaginary part of a complex number to be processed though a 4096-point complex FFT. This operation will be accomplished in four stages to reduce the amount of hardware required to compute the numerous mathematical operations required by this function. However, to accomplish this hardware re-use, the 4096 points must be re-ordered prior to entry into each processing module of the FFT (butterfly and twiddle factor multiplication) as well as normalized after each operation to prevent overflow from occurring during the recursive multiplications and additions. In the first stage of the FFT block the input data is sampled from the FIFO while the remaining 3 stages pass the results from the previous stage (latched in FFT_HOLD) back to the FFT_ENTRY register for continued processing. In all 4 stages the data from FFT_ENTRY is reordered according to the current stage, processed through and 512 8-point FFT’s to realize a 4096-point butterfly. With the exception of the last stage, the output of the butterfly is again reordered and processed though the twiddle factor-multiplying module that simultaneously selects the correct twiddle factors for each point from a memory bank. The resulting values are then normalized and latched to the FFT_HOLD register. During the last stage, the output of the butterfly module is used as the input to the FFT_HOLD register and is intern passed to the output block for post-processing and output transmission.

The final block of the FPGA-SA is the output block. This block latches the input from the FFT_HOLD register in the FFT block every 4th FFT clock-cycle. The data is the re-order and duplicated to provide a 40-bit by 8192-point input to the post-processing butterflies and twiddle factor multiplications. The result of the post processing yields a 8192 40-bit data points which are latched for transmission to the display buffer in 20-bit blocks in synchronous, ‘burst’, mode synchronized with the system clock. Once the entire array of data has been received, the magnitude of the 40-bit complex points should be determined and the value displayed corresponding to the appropriate frequency sector.

The physical structure of the Verilog design can be seen in the Hardware Module Map below and further described in Appendix B - Hardware Module I/O Descriptions. The system is broken down into two sets of 3 groups. The first set pertains type of processing being completed: ‘Data Path & Control’, ‘High-Level Processing’, and ‘Low-Level Processing’. The second set is concerned with the operation being performed: ‘Decimation’, ‘FFT’, and ‘Output’. Each module can be classified to a group in each set.

The highest-level module in our system is the FPGASA module. This module controls the movement of data between the other modules as well as between the system and the outside environment. Below this module but similar in function are the block control modules, DECIMATION, FFT, and OUTPUT. These three modules control the data movement and processing between the high-level processing modules in their block as well as the communication of data between other block control modules.

The high-level processing modules include the BUTTERFLY, FFT8pt, TWIDDLE, POSTPROCESS, and PPTWIDDLE modules. The butterfly module uses 512 instantiations of the FFT8pt module to realize a 4096-point butterfly operation. The FFT8pt module takes in eight 40-bit complex, fixed-point numbers and performs an 8-point FFT in 3 stages presenting eight 40-bit complex results as output. The TWIDDLE and PPTWIDDLE modules are used to multiply the 4096 complex entries by an input factor corresponding to the stage of processing. The TWIDDLE module has three stages that use the same set of twiddle factors in different sequences depending upon the stage. Therefore this module must also have a control input to determine the correct twiddle factor sequence as well as the appropriate normalization factor to use after multiplication. The PPTWIDDLE module is only used in one stage, thus it has no need for a twiddle bank re-order or control logic to determine the normalization setting.
[image: image101.wmf]2

0

I

A

BW

F

-

<

The lowest level of processing in our system is the basic arithmetic processing; specifically additions, subtractions, and multiplications in both the real and complex domain. To accomplish these tasks ALU32 is used to realize real additions and subtractions while cALU40 and cMULT40 are used to implement complex additions/subtractions and complex multiplications respectively. Although these modules are simple in function, the optimization of their design is crucial to the efficient realization of the system as they are the most prominent and processing intensive modules in the design.
Design Methodology

Before finalizing the design structure for the Verilog realization, a bit-level model was created in Matlab to observe the expected behavior of the hardware and generate test vectors for testing the hardware modules. To realize the high-level processing modules previously described, the Matlab operations were mimicked as close as possible in hardware form to ensure an accurate transfer to the hardware domain.
In realizing the high-level processing modules, thousands of instantiations of the low-level processing modules were used to process the large amount of data being fed through these modules. Fortunately most of the large blocks of code necessary for these realizations were recursive in nature and we were able to use Matlab to generate these sections to be inserted into their appropriate module. It should be noted that the recursive code has been removed with the exception of the first and last instantiation for the hard-copy versions of the code. The programs used to generate these blocks as well as the complete Verilog source code can be found on the CD accompanying this report under the Verilog directory.

Much research was done concerning various architectures of the low-level processing modules, however for our initial design these modules were left simple using ripple-carry adders and control logic to generate a variety of operations per module. In the final realization, more efficient arithmetic schemes should be used and each operation should be completed in a separate module where hardware-reuse is not being implemented to promote the most efficient design. However, to reduce the opportunities for error and increase the scope of design adjustments, we chose to begin with these simple, multi-functional modules.

The control modules that connect the various modules into one system had several considerations not necessary in the Matlab implementation. In the hardware domain everything is either combinational or sequential with the combinational events happening between the transitions of the sequential events. The sequential events are controlled by a clock whose speed plays a key roll in the throughput and ultimately the performance of the system. However, the sequential events, or more generally the clock, must allow enough time for the combinational events to complete within the cycle. Failure to do so will cause invalid data points resulting in the temporary breakdown of the system. If these errors occur frequently or in large blocks the system will be useless. Thus, it was very important to ensure that the timing between the blocks allowed sufficient time for each operation to be completed. The first block is independent of the rest of the system and runs on a separate clock provided from the ADC. However, if data ceases to be input to the system while FFT and OUTPUT blocks continue to operate, the data window taken from the FIFO will be inaccurate causing errors in system operation until the dirty segment of the FIFO is shifted out. Therefore we implemented a system enable signal that will freeze the operation of the entire system if the sample clock stops and restart the system once the sample clock is active again.
The other two blocks are directly related in regards to timing. The execution of one 4096-point FFT though the FFT module will take 4 clock-cycles. However, before the next FFT processing can begin, the results from the last FFT process must undergo post-processed and be completely transmitted to the display buffer to avoid loss of data. The data to be transmitted is 8192-points x 40-bits and the output bus of the FPGA-SA is 20-bits. Therefore a complete transmission will require 16384 clock-cycles. Adding in a time for the post-processing execution and a safety margin each FFT clock-cycle should be reduced 5000 times the output clock cycle. To implement this we will input a system clock equal to 200kHz resulting from the minimum 10X refresh rate and divide this clock to produce the FFT clock. This system clock will also function as the output clock, however it will only pass though when data is being sent and be blocked otherwise.

Aside from the important timing considerations, it was also important to include a reset function to initialize the system upon start-up or refresh the system in the event of a malfunction. Therefore we implemented an active-low, asynchronous reset that will clear all counters and return all control signals to a known state for initialization.
System Testing

To verify the operation of the module designs, a test bench was written for each module. A test bench is a type of Verilog module that applies signals and data to the input of a specified module in “real-time” and processes the resulting output signals. The inputs and expected outputs to the system, the test vectors, were generated in the Matlab binary model. On modules with small output sizes such as the low-level processing modules, the output was verified visually comparing the received results to the expected. For the other modules containing several thousand output bits, conditional statements were used within the test bench to verify that the generated and expected output were identical. This same verification method was used to test the movement of data through reorders and between modules in the data path & control modules. Unfortunately it was not possible to test the entire system at the data path & control level due to the complexity of the design. To accommodate for this resource limitation we temporarily altered the control module to bypass the modules below it and observed that the data was reordered correctly and passed at the appropriate time. This method of verification was possible because of our testing strategy, which was to start at the bottom level modules and work up to the top-level module in our testing sequence. Therefore, since we had already verified every module below the control module being tested, putting it into bypass mode did not damage the integrity of our tests.
FPGA Selection

Of the given platforms we selected the Virtex II platform as our targeted technology. This is a new platform produce by Xilinx that excels at cumbersome mathematical operations encountered in high-end, large-scale signal processing applications. Because of our design strategy, we needed to select an FPGA that exceeded the limitations of our design specs to allow us to realize a foundational design from which to develop an [image: image102.wmf]2

2

S

I

A

F

BW

F

<

+

optimized solution. Or project goal was to fit the system to an XC2V250 or lower. The XC2V250 has 250,000 system gates, 144kb of RAM, and 8 dedicated multipliers. In searching for a development kit containing an FPGA greater than this we found that the only option available to us was a board by Avnet populated with the XC2V4000 containing 4 million system gates, 2160kb of RAM, and 120 dedicated multipliers. Because of the sheer size of this FPGA, we expect that even our initial design should have not problems being mapped to this device, and because it is of the same architecture as our targeted technology, this selection will allow us to accurately predict the performance of the optimized design on devices within the project description. Unfortunately this device was not made available to us within the time frame of our project due to delays in manufacturing.
Design Future

Because of the broad scope of the project and delays in receiving materials, we were unable to complete this project to the extent that we originally set out to do. We have designed what we believe to be the best solution to the design problem and implemented this system in Verilog to be applied to an FPGA. However we had planned to synthesize this design to the FPGA and insert it into the testing environment that we have developed and further refine the system to an optimum design. The following will detail the next steps to be taken in this project should someone decide to continue with our research.

Design Demonstration

Included with this report are several documents for the continuation of the research we have started this semester including a document on FPGA loading (see Appendix B) and information highlighting features of interest pertaining to the Avnet development kit (see Appendix B). In addition to the appendices attached to this report, the attached CD contains all Verilog and Matlab code, reports and presentations, hardware/software documentation, and other relevant information to the continuation of this project. In addition to these documents the reader should reference the section detailing the National Instruments test system we have developed to interface with our design on the Avnet development kit.

Design Optimization

Once the design has been synthesized and implemented in the test system described in section 7, the results from testing and design analysis can be used to realize the optimal solution from the working, foundational model. The following are several areas we noted for improvement in the initial realization of the FPGA-SA.

The simplest level of optimization will be on the module level because design improvements can be made to architecture without affecting its interface with the rest of the system by preserving the input/output relationships. For example, the fuller adder module, which is currently realized with a ripple-carry adder, can be replaced by a more efficient architecture such as the pipelined adder or the carry look-ahead adder described in the Options for Design section.
It should also be noted that the changes to the low-level processing modules will have their gains multiplied though each instantiation multiplying the effect of each improvement. Thus, although a major change on the data path & control level could provide substantial improvement in system performance, a minor change to the realization of the arithmetic operations in the low-level processing modules could have an even affect change by virtue of the scope of the module’s implementation.

Another key area for improvement will be in the re-design of modules that were intentionally made multi-functional for the initial realization (i.e. twiddle.v, cmplxALU.v, and cmplxMULT.v). Although the general design of these modules was advantageous to the first realization, separating these modules into dedicated, application-specific modules for each task will reduce the hardware required for synthesis and possibly allow for additional architecture improvements.

A more complex area for improve will involve the adjustment of the data path & control level modules. We selected timings and hardware re-use schemes that we believed to be very efficient for the application, however testing and further design analysis should be used to ensure that no block is ‘out-performing’ the overall system requirements causing unnecessary limitations to other modules. For example, the output scheme could be adjusted to allow more time for the FFT execution. Since the FFT block is the most processing intensive section, additional computation time could allow for greater hardware re-use thus minimizing the space required on-chip. Additionally, the hardware re-use scheme we have implemented could be further optimized to either reduce the size of the necessary logic by adding additional FFT stages to the realization of the 4096-point FFT.

Lastly, because space is a major performance factor in the optimal realization of the FPGA-SA, the reduction of the number of registers and memory required by the system will have a great affect on the level of reduction achieved in the final realization.

5.3 Computer Interface

The output from the FPGA-SA would not be useful without a computer to display the results in a useful form. Additionally, to test the FPGA-SA with out an ADC we needed a method to artificially fed data to the FPGA. This is where the hardware and software of the computer interface become applicable.

We had to decide on some hardware and software combination that would allow us to both send data to the FPGA-SA at the required 999.7kHz and receive the output of the FPGA-SA with at least 10 updates per second. We chose to use the National Instruments High Speed Digital Acquisition Board. Since we chose to use this board, we were then forced to use Labview to drive it. In looking at the software in Labview, we discovered that it would be capable of the software needs as well.

Before we could use the NI Board, we needed to test its operation. This was accomplished by first putting the board in a computer that has Labview installed. We connected the signal-conditioning box to the computer and then wired the board such that ports 0 and 1 were connected to ports 2 and 3. Data is sent down ports 0 and 1 and received on ports 2 and 3. This would prove to be an effective test of the board. The picture below shows this being set up.

[image: image25.jpg]

Figure 5.3-1: Setting up the test system
In order to test this system, we used the following virtual instrument. It sent data down ports 0 and 1 and received it on ports 2 and 3 plotting the result.

[image: image26.png]Fle Edt Operate Took Browse Window telp

2] ©[1][2] [ual] [30 Applcation Fone |~

L

Ta gl

=4
iy Condiart] -

T i N
= (B) ’j@-‘) s8]

irray Constant] é] froo]

Bl lni

utput]

=]

Figure 5.3-2: Virtual Instrument to test the Board
After this test was completed, we were confident that the system was working. The next stage in testing was making sure that the plots that Labview would create would be acceptable for our use. We did this by creating a virtual instrument that reads the input data from a file, and plots the windowed FFT on the instrument display. An example of this interface is shown below.

[image: image27.png]Fle Edt_Qperate Tods Browse Windaw e
D[] @[] [150 Bpplction ot~

2|

Tntesity

1099926

Resolution
oo

-ssotes

I—m

Step Size
200

Sprnduy

Tine:

Display
History

iz

Frequency.

Figure 5.3-3: Output Example

Now that we know that the hardware works properly and that Labview can produce an acceptable output plot, we can begin setting up the actual system that the final project will use.

The first stage is to read the input from a hex file and send it to the FPGA using a hardware handshaking method. This method has 16 data lines with 3 control lines. The controls line is the standard request, acknowledge, and clock signals. The receiver has to obtain 8192 complex 32-bit points per update. They are sent in 16 bits real and 16 bits complex components. The same hardware handshaking is used in this part of the project as well. After we realized that Labview would do the job, we constructed the following Virtual instrument:

[image: image28.png]Fle Edt Operate Took Browse Window telp

R oo [13 Appcation Fort.

=

=

s

]

Figure 5.3-1: Labview Virtual Instrument

The operation of this instrument is rather simple even though it doesn’t look like it. The upper left corner reads the hex file and converts the result to 16bit signed numbers. After the loop (the paper sheet looking block) is processed, the array is converted from 16 bit numbers to two 8 bits numbers, which store the upper and lower bits. Then these arrays are interleaved into one array. The reason for this is the ports on the NI board can only send 8 bits at a time, and two are used for each transfer.

The next quarter down in the instrument actually perform the send to the board and the data pins. The handshaking is set up as external, which tells the card to use the control, pins for the handshaking protocol. The next quarter performs the read from the other half of the signals. This will be connected to the output of the FPGA-SA and will contain the frequency analysis data.

Inside the box at the lower left is where the real display action is preformed. 16384 points are read which correspond to 8192 complex numbers. Once again, the numbers in are split into two 8-bit values, which have to be recombined into a single 16-bit number. Then the array is split into its complex and real components. The magnitude is computed. At the bottom of this box is a series of array operations, which perform the sliding action on the display. The first step is to remove the oldest set of elements from the array and then put the new ones onto the bottom of an array. The final array will be displayed on the output. The user interface for this is shown below:

[image: image29.png]~=lolx|

Fle_Edt Operate Took Browse Window telp

2] Tapt Appication Font.__|~ |8~ =] O~

Devie outpt

i Run - -100.0

oy tengn B

e 40 .

. 2
outports] 500 B
0 E &

20-]

InParts
5 10-} I—n 0

Hendshaking Source: o
Extemal B i
Frequency

Figure 5.3-2: Virtual Instrument Interface
This interface contains a few controls. The first is the device number of the NI card. This is set so that the software can communicate with the card. The next control is the history length, which set how many of the updates are visible on the display. The in and out ports specify which port to send the data on and which ones to receive on. The final step in the setup of the board is the handshaking. External is recommended, as it will actually talk with the FPGA-SA to ensure that the data is transferred properly. The display will continue to update as it received data from the FPGA-SA. The amplitude is auto-scaling so that one does not need to be concerned with the actual overall intensity of the signal. The next section will provide more information on the NI Signal Conditioning and Data Acquisition Boards
National Instruments Signal Conditioning and Data Acquisition Boards

After data has been processed by the Virtex-II Development board, signals travel to a signal conditioning board and then to data acquisition board. The signals, 32 I/O and 6 handshaking lines for a total of 38 signals, are controlled and guided through each phase according to the Labview test bench as stated above. From the Virtex-II Development board, the signals first travel to the SCB68 National Instruments signal conditioning board. In this phase the signals are routed by hand wiring them through different buses on the board. The test bench Labview processes the signals then indicates to the bus when the sequence is complete. Each of these buses is then fed through the 68-pin 183432B-02 National Instruments Cable to the PCI-6534 Data Acquisition board also made by National Instruments. Once the signals reach the final board, the 32 MB on board memory per data path stores each data point until the computer requests the data points. At that time, the data is output to the screen which scrolls the data for the user to comprehend. For our purposes, we only needed 4 of the possible 6 buses on the signal conditioning board however, we maximize the ability of the PCI-6534 board with its 32 I/O signal lines. With a maximum transfer rate of 80 MB/s, the final signals are fed to the user with plenty of time to spare since the maximum needed transfer rate is 6.5 Mb/s.

6. System block diagram
The system block diagram, presented in Figure 6.1, shows an overview of the weak signal receiver. The top half of the diagram shows the analog front end electronics which modifies the signal that is digitized and processed by the blocks shown in the bottom half of the diagram. The blocks in the bottom half of the diagram shows each stage of our design.

[image: image30.wmf]144-148 MHz

2-Pole

LC

 Filter

Computer

Interface

FFT

(using butterfly

method)

Figure 6.1: Weak Signal Receiver Flowchart

Receive

RF

 Amp

32 dB

144-148 MHz

4-Pole

LC

 Filter

Synthesizer

124.3 to 128.4 MHz

5 KHz steps

20 MHz +/- 6 kHz

4-pole crystal

bandpass

 filter

16-bit

ADC

1

MSPS

Decimate by

a factor of 32

Computer Display

Refrences

: "The

DSP

-10: An All-Mode 2-Meter Transceiver Using a

DSP

 IF and PC-Controlled Front Panel,

Part1

"

QST

, September 1999,

pp33

-41 or http://

www.arrl.org

/

tis

/info/

vhfproj.html

Mixer

7. Testing

We have performed extensive testing of our system throughout the design process to ensure a quality design. The design process was broken into several stages:

· Top-level Matlab Simulations

· Bit-level Matlab Simulations

· Verilog Simulations

· Final System Implementation

At the conclusion of each design stage, extensive testing was conducted before moving to the next stage to ensure that the system meets all system specifications and no mistakes or errors had occurred. This section will describe the testing performed after each stage beginning with the Top-level Test and concluding with the Final System Test.

7.1 Top-level Test

The first design stage consisted of top-level Matlab simulations of the CIC filter, FIR filter, and the FFT module. In this stage we used built-in Matlab functions such as “fft” and “filter” to verify that the system specifications as described in Section 5.1 would operate correctly. This stage of the design was an iterative process in which the various design parameters could easily be modified. In this simulation we also tested the technique of undersampling the input analog signal to achieve frequency translation of the information bandwidth. Lastly we used this model to confirm that the decimation filter design and 8192-point FFT would meet the output design constraints as detailed in Table 4.2. After this model proved to meet all the system requirements, it was considered to be the “ideal model”. The ideal model could then be used to produce the ideal data output given any input. This established the standard in which subsequent data could be compared against.

7.2 Bit-level Test

Next we created a bit-level model of the system. This model was also created in Matlab, but in this model we took into account what actually happens in hardware. The effects of 2’s complement, fixed-point arithmetic were incorporated into the model. This more realistic model took into account the effects of adding, multiplying, and truncating to the least significant bit. Also, it was possible to study quantization error, underflow, overflow and bus widths at this time. We tested this model with several simulated inputs that were created in Matlab. By comparing the output of this model with the output of the previous model we were able to make adjustments in our low-level design until these results closely matched the ideal results. The testing of this stage was very thorough, since it served as a bridge between the software and hardware portions of our design.

7.3 Verilog Test

The third stage of testing was implemented using the Verilog model. Several modules were created in Verilog in order to describe our design. Communication with the modules was accomplished though I/O ports listed in the module definition. At this point we had taken into consideration the interaction of each stage in our design and decided on the necessary clock and control signals. With the Verilog model we were able to use Cadence Verilog XL to simulate different test benches that would verify our design description was correct. These test benches apply signals and data to the inputs in ‘real-time’ with the proper delays inserted in order to mimic the device’s physical operation and observe the resulting output.

Due to the design’s complexity and our available computer processing limitations it was unfeasible to test the entire system at once. As a solution, several test benches were created to complete the testing in stages. We started the testing with the low-level processing modules, the arithmetic modules, and then moved on to the high-level processing modules once the low-level module testing was complete. From there we tested the data path and control modules to verify the correct data movement and timing. The output data resulting from the applied test bench to each of these modules was compared to the expected output generated by applying the same inputs to the bit-level model. The Verilog code was continually debugged until there were no significant discrepancies between the test bench output data and the data realized in the bit-level test.

7.4 Final System Test

The FPGA-SA, after implementation, will be tested with aid of a computer and the high- speed data acquisition board provided by National Instruments (N.I.). The computer will create test signals that will be transmitted to the FPGA-SA through the N.I. board as shown if figure 7.4-1.

[image: image103.wmf]41

12

*

2

7

.

999

2

=

÷

ø

ö

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

=

kHz

kHz

floor

BW

F

floor

D

I

S

[image: image31.wmf]FPGA

Bus A-

F

32 I/O

6 Control

Bus A

Bus B

Virtex

-II

Development

 Board

Bus

C

Bus D

Control

SCB

-68 Signal Conditioning board

Bus A

Bus B

Bus

C

Bus D

Control

32

MB

Memory

PCI

-6534

Data Acquisition

 board

NI

 Cable

183432B

-02

The FPGA-SA will then process the data and transmit the results back to the computer via the N.I. board. A virtual instrument (figure 7.4-2) was created in Labview to provide three ways to compare the ideal output with the results coming from the FPGA-SA. A window shows the input in the time domain and in the frequency domain. If the system is operating correctly, the display of the frequency spectrum obtained from the FPGA-SA will closely match the ideal frequency spectrum. The frequency spectrum obtained from the FPGA-SA is the converted into the time domain, in order to provide another visual comparison. Lastly a percent error indicator was created for the virtual instrument. The percent error was calculated by taking the magnitude of the difference between the ideal and calculated values and then dividing that by the ideal value. This was done in the frequency domain so that time delay would not be a large source of error.

[image: image104.wmf]÷

ø

ö

ç

è

æ

=

32

32

1

)

(

f

X

f

Y

S

[image: image32.png]B> test pan

=10l

Fle Edt_Operate Took Browse Window telp

[®] @[] 130 ApplcationFore.__|~
) FleReady Input Frequency of Input Plot0
D i eror 40000 25000000.0
@ svstemEnar g 200007 R
g £ 1s000000.0-}
fun o H
E 2 toooooon.o-
L 20000 soo0000.0-
~40000-7 o o o 0.0 o i o
Source 0 000 zo000 0000 0 10000 2000 000
r— Tine Frequency
Time Domain signal of Output. Plot0 B | output Poto B
L, oo 250000800
T , zoeess.o-
S 15000000.0-}
00+ El
2 toooooon.o-
2 5000000.0-| |
~40000.0-; o o o 0.0 o i o
= 0 10000 000 30000 0 10000 2000 000
Tine Frequency

I

8. Gantt Chart

[image: image33.png]Research
ADC
FFT
CIC Filter
Status Report#1
FPGA De:
FIRFi
Proposal Presentation
Wiitten Proposal
Simulation
Matlab
Status Report2
Verilog
Status Reports3
Implementation
Status Reportéd
Oral Presentation
Project Check-off
inal Report
Raytheon Visit
FPGA Implementation

The Gantt chart presented in Table 8-1 shows a various tasks that must be completed for this project and when they must be completed.

9. Tracking Chart

The tracking chart presented in Figure 9-1 shows actual vs. predicted total number of hours we worked on the project.

[image: image105.wmf]4

1

1

1

)

(

÷

ø

ö

ç

è

æ

-

=

-

z

z

H

I

[image: image106.wmf]4

1

0

4

1

1

1

)

(

÷

ø

ö

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

å

-

=

-

-

-

R

k

k

R

z

z

z

z

H

10. Responsibility Matrix

	Table 10-1: Responsibility Matrix

	Task
	Responsibility
	Week Due

	1. Research / Select ADC
	Mike
	2/11/2002

	2. Implement ADC
	Mike
	2/25/2002

	3. Examine FFT Possibilities
	Chris
	2/18/2002

	4. FFT Realization
	Chris / Andrew / Graham
	2/25/2002

	5. Investigate CIC
	Chris / Paul
	2/11/2002

	6. Select and Design CIC
	Paul
	2/18/2002

	7. Implementation of FPGA
	Chris / Paul / Mike
	Later Date

	8. Analog Filter Model
	Graham
	2/18/2002

	9. Proposal Presentation
	ALL
	2/18/2002

	10. Written Proposal
	ALL
	2/25/2002

	11. Overall Simulation Design
	Andrew / Graham
	3/11/2002

	12. Matlab Models
	Andrew
	3/11/2002

	13. NI Test Board
	Graham/Paul
	4/29/2002

	14. Verilog Coding
	Chris
	3/11/2002

	15. Oral Presentation
	ALL
	4/15/2002

	16. Project Check-off
	ALL
	4/29/2002

	17. Final Report
	ALL
	4/29/2002

	18. Visit with Raytheon
	ALL
	5/6/2002

Table 10-1 presents the breakdown of responsibilities given to each team member.
11. Budget
Our budget, presented in Table 11-1, shows the expected cost of the design as if we were a real design team in industry.

	Table 11-1: Design Budget

	Expenditures
	Rate
	Count
	Total

	
	
	
	

	Engineering Labor
	$30 / hr
	800 hrs
	$24,000

	Hardware Components
	
	
	

	 a. FPGA
	$2,500 / board
	1 part
	$2,500

	 b. NI Test Board
	Donated
	1 part
	$0

	Software Packages
	
	
	

	 a. Matlab
	$1,000 / authorization
	2 authorizations
	$2,000

	 b. Cadence
	$1,000 / authorization
	1 authorization
	$1,000

	Miscellaneous
	
	
	

	 a. Parallel Cable
	 $100/cable
	1 part
	$100

	Total Cost of Design
	
	
	$29,600

12. References
[1] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications. Upper Saddle River, New Jersey: Prentice-Hall, 1996.
[2] R. Vaughan, N. Scott, and D. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process., vol. 39, pp. 1973-1984, Sept. 1991.
[3] U. Meyer-Baese. Digital Signal Processing with Field Programmable Gate Arrays. New York: Springer-Verlag, 2001.
[4] Richard J. Higgins. Digital Signal Processing in VLSI. New Jersey: Prentice Hall, 1990.
[5] Steven W. Smith. A Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Publishing, 1997, www.dspguide.com.

[6] Richard P. Brent and H.T. Kung, “A Regular Layout for Parallel Adders”, IEEE Transactions on Computers, C-31, pp. 260-264, 1982.
Appendix A – Matlab Simulations
%%%

% FIR Optimization %

% %

% Raytheon Team %

% %

% Andrew Puryear %

% Graham Booker %

% Mike Neatherlin %

% Christopher Washington %

% Paul Fuller %

% %

% This program optimizes the FIR filter %

%%%

clear;

%clf;

Fs = 999.7E3/16; % sampling frequency

D = 2; % decimation ratio of the system

mses=1E100;

z1=0;

for pn1=[2.45:.001:2.51]; % 2.550

 disp(pn1)

 for rp1=[.74:.001:0.76]; %0.75

 for pp1=[0.39:.001:0.41]; %0.4

 adc=[zeros(1,200),1,zeros(1,200)];

 B1=zp2tf([-1;z1; exp(-j*pn1);exp(j*pn1);rp1*exp(-j*pp1);rp1*exp(j*pp1)],[0;0;0;0;0;0],1);

 sig1=filter(B1,[1],adc);

 sig=sig1(1:2:length(sig1));

 firresp=fft(sig);

 adc=[zeros(1,3200),1,zeros(1,3200)];

 sig = filter([1],[1,-4,6,-4,1],adc);

 sig1 = sig(1:32:length(sig));

 sig1 = filter([1,-4,6,-4,1],[1],sig1);

 cicresp=fft(sig1);

 totresp=abs(cicresp).*abs(firresp);

 avgpass=sum(totresp(1:83)/length(totresp(1:83)));

 mse=sum((totresp(1:83)./avgpass-1).^2)+0.1*sum((totresp(84:100)./avgpass).^2)+0*sum(abs(firresp(100:200)));

 %subplot(3,1,1);plot(abs(firresp));axis([0 length(firresp) 0 max(abs(firresp))]);grid;

 %subplot(3,1,2);zplane(B1,[1]);

 %subplot(3,1,3);plot([1:83],totresp(1:83),[1,83],avgpass);axis([1 83 0 max(totresp)]);grid;

 %drawnow;

 if mse<mses

 pp1s=pp1;

 rp1s=rp1;

 pn1s=pn1;

 mses=mse;

 end

 end

 end

end

pp1s

rp1s

pn1s

mses

adc=[zeros(1,200),1,zeros(1,200)];

%B1=[1,1.55369,.611503,-.447742,-.278341,.193582,-.033635];

pp1=pp1s;

rp1=rp1s;

pn1=pn1s;

B1=zp2tf([-1;exp(-j*pn1);exp(j*pn1);rp1*exp(-j*pp1);rp1*exp(j*pp1)],[0;0;0;0;0],1);

sig1=filter(B1,[1],adc);

sig=sig1(1:1:length(sig1));

firresp=fft(sig);

subplot(2,2,1);plot(abs(firresp));axis([0 length(firresp) 0 max(abs(firresp))]);grid;

title('Frequency Response of FIR Filter'); xlabel('Frequency [Hz]'); ylabel('Signal Intensity');

sig=sig1(1:2:length(sig1));

firresp=fft(sig);

subplot(2,2,2);zplane(B1,[1]);

title('Z-plane Zero-Pole Plot of FIR');

adc=[zeros(1,3200),1,zeros(1,3200)];

sig = filter([1],[1,-1],adc);

sig = filter([1],[1,-1],sig);

sig = filter([1],[1,-1],sig);

sig = filter([1],[1,-1],sig);

sig1 = sig(1:32:length(sig));

sig1 = filter([1,-1],[1],sig1);

sig1 = filter([1,-1],[1],sig1);

sig1 = filter([1,-1],[1],sig1);

sig1 = filter([1,-1],[1],sig1);

cicresp=fft(sig1);

totresp=abs(cicresp).*abs(firresp);

avgpass=sum(totresp(1:83)/length(totresp(1:83)));

subplot(2,2,3);plot([1:83],totresp(1:83),[1,83],avgpass);axis([1 83 0 max(totresp)]);grid;

subplot(2,2,4);plot([1:83],abs(cicresp([1:83])));axis([1 83 0 max(abs(cicresp([1:83])))]);

%%%

% Decimation Filter Simulation %

% %

% Raytheon Team %

% %

% Andrew Puryear %

% Graham Booker %

% Mike Neatherlin %

% Christopher Washington %

% Paul Fuller %

% %

% This program models the decimation filter. %

%%%

clear;

Fs = 999.7E3; % sampling frequency

n = [1:1:262144]; %

D = 32; % decimation ratio of the system

sample=16; % decimation ratio of CIC

numbits=32; % accuracy inside CIC

normalize=1; % normaliztion for accumulators

% Create Signal

adc=zeros(1,length(n));

for t=[-6000:1000:6000];

 adc=adc+cos(2*pi*(20E6+t)*n/Fs);

 disp(t)

end

% Normalizes signal to max of 1

adc = adc./max(abs(adc));

adc1 = round(adc.*32767);

in=' ';

while and(in~='Y',in~='N')

 in=input('Begin New [Y/N]?','s');

 if isempty(in)

 in=' ';

 end

end

if in=='N'

 fid=fopen('simgraphs3.dat','r');

 indata=fscanf(fid,'%i',[1,inf]);

 fclose(fid);

 bcount=indata(1);

 accum1=indata(2);

 accum2=indata(3);

 accum3=indata(4);

 accum4=indata(5);

 inint00=indata(6);

 inint10=indata(7);

 inint01=indata(8);

 inint11=indata(9);

 inint02=indata(10);

 inint12=indata(11);

 inint03=indata(12);

 inint13=indata(13);

 interp1=indata(14);

 interp2=indata(15);

 interp3=indata(16);

 interp4=indata(17:length(indata));

end

if in=='Y'

 accum1=0;

 accum2=0;

 accum3=0;

 accum4=0;

 interp1=0;

 interp2=0;

 interp3=0;

 interp4=0;

 inint00=0;

 inint10=0;

 inint01=0;

 inint11=0;

 inint02=0;

 inint12=0;

 inint03=0;

 inint13=0;

 bcount=1;

end

for count=[bcount:length(adc1)]

 if floor(count/sample)==count/sample

 disp(count)

% s=input('Continue?','s');

% if isempty(s)==0

% if s=='N'

% fid=fopen('simgraphs3.dat','w');

% fprintf(fid,'%20.0f\n',[count,accum1,accum2,accum3,accum4,inint00,inint10,inint01,inint11,inint02,inint12,inint03,inint13,interp1,interp2,interp3]);

% fprintf(fid,'%20.0f\n',[interp4]);

% fclose(fid);

% break;

% end

% end

 inint03=interp3;

 interp4(count/sample)=fulladd(inint03,-inint13,numbits);

 inint13=interp3;

 inint02=interp2;

 interp3=fulladd(inint02,-inint12,numbits);

 inint12=interp2;

 inint01=interp1;

 interp2=fulladd(inint01,-inint11,numbits);

 inint11=interp1;

 inint00=floor(accum4/normalize);

 interp1=fulladd(inint00,-inint10,numbits);

 inint10=floor(accum4/normalize);

 end

 accum4=fulladd(accum4,floor(accum3/normalize),numbits);

 accum3=fulladd(accum3,floor(accum2/normalize),numbits);

 accum2=fulladd(accum2,floor(accum1/normalize),numbits);

 accum1=fulladd(accum1,adc1(count),numbits);

end

% Shift right 16 bits

pdec=floor(interp4./16^4);

pdec=pdec(1:length(pdec));

% Equalize passband and lowpass filter

B=[1,1.55369,.611503,-.447742,-.278341,.193582,-.033635];

firs=zeros(1,7);

for count=[1:length(pdec)]

 firs(7)=firs(6);

 firs(6)=firs(5);

 firs(5)=firs(4);

 firs(4)=firs(3);

 firs(3)=firs(2);

 firs(2)=firs(1);

 firs(1)=pdec(count);

 if floor((count+1)/2)==(count+1)/2

 disp(count)

 fdec((count+1)/2)=floor((B(1)*firs(1)+B(2)*firs(2)+B(3)*firs(3)+B(4)*firs(4)+B(5)*firs(5)+B(6)*firs(6)+B(7)*firs(7))/2^10);

 end

end

% Compute the frequency spectrum

fsig=fft([zeros(1,2000),fdec([4:1:length(fdec)]),zeros(1,2000)]);

clf;

% Plot the actual spectrum

subplot(2,1,1);

plot([1:1:length(fsig)]*Fs/(length(fsig)*D),abs(fsig));

axis([0 12000 0 max(abs(fsig))]);grid;

title('System Simulated Output With Passband Equalization'); xlabel('Frequency [Hz]'); ylabel('Signal Intensity');

%%

% Produce FFT with MATLAB functions

idec = decimate(adc1,D);

ifsig = fft([zeros(1,2000),idec([1:1:length(idec)-3]),zeros(1,2000)]);

% Plot the simulated spectrum

subplot(2,1,2);

plot([1:1:length(ifsig)]*Fs/(length(ifsig)*D),abs(ifsig));axis([0 12000 0 max(abs(ifsig))]);grid;

title('Ideal System Simulated Output'); xlabel('Frequency [Hz]'); ylabel('Signal Intensity');

%%%

% 8192pt FFT Simulation %

% %

% Raytheon Team %

% %

% Andrew Puryear %

% Graham Booker %

% Mike Neatherlin %

% Christopher Washington %

% Paul Fuller %

% %

% This program simulates the 8192pt FFT. %

%%%

% 4-23-02 This is the latest version and is currently operational.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8192 Point FFT Module %%

function toret=fft8192pt()

clear;

global norm1

global TWIDLE

global norm12

TWIDLE=floor(exp(-j*2*pi/4096*[0:3577]).*2^18);

imag(TWIDLE)

twidle2=floor(exp(-j*pi/4096*[0:4095]).*2^18);

norm1=2;

norm12=4;

norml3=0;

% create test signal

load fftsave.mat

%ddec1=ddec(2:8193);

%ddec1=(2*rand(1,8192)-1).*(2^15-1);

%ddec1=ones(1,8192).*(2^15-1);

%ddec1=[1,zeros(1,8191)].*(2^15-1);

%%

adc=zeros(1,8192);

for t=[0:1000:12000]

 adc=adc+.8*cos(2*pi*t*[1:8192]/31240.6);

 disp(t)

end

%Normalizes signal to max of 1

adc = adc./max(abs(adc));

%adc=[1,zeros(1,9999)];

ddec1 = floor(adc.*32767);

%%%

sig=ddec1(1:2:8192)+j*ddec1(2:2:8192);

% Stage one

inter1=[];

for cnt=[1:512]

 inter1=[inter1,fft8ptb(sig(cnt:512:4096))];

end

% Reorder data set

inter2=[];

for cnt=[1:8]

 inter2=[inter2,inter1(cnt:8:4096)];

end

% Multiply by twidle factor using method two

inter2([1:4096])=floor(inter2([1:4096]).*TWIDLE(mod([0:4095],512).*floor([0:4095]/512)+1)./2^14);

inter2=checkover(inter2,20);

% Send to 512 point FFTs

inter3=[];

for cnt=[1:512:3585]

 inter3=[inter3,fft512ptb(inter2(cnt:cnt+511))];

end

inter3=checkover(inter3,20);

inter4=[];

for cnt=[1:512]

 inter4=[inter4,inter3(cnt:512:4096)];

end

% Convert 4096 points to 8192 points

finter4=[inter4(1) fliplr(inter4(2:length(inter4)))];

X1b=floor((inter4+bconj(finter4))./2);

X1b=checkover(X1b,20);

X2b=amult(floor((inter4-bconj(finter4))./2),'-j');

X2b=checkover(X2b,20);

inter5=[floor((X1b+floor(X2b.*twidle2(1:4096)./2^18))),floor((X1b-floor(X2b.*twidle2(1:4096)./2^(18-norml3))))];%May want to normalize

inter5=checkover(inter5,20);

% Plot results

subplot(2,1,1);plot(floor(abs(inter5)./2^12));axis([0 8192 0 2^7-1]);title('Team Raytheon 8192-point FFT');xlabel('Freqency');ylabel('Intensity');

sfft=fft(ddec1);

subplot(2,1,2);plot(abs(sfft));axis tight;title('MATLAB Function 8192-point FFT');xlabel('Freqency');ylabel('Intensity');

toret=sqrt(sum((sfft-inter5).^2));

return;

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 512 Point FFT Module %%

function vert=fft512ptb(insig)

global TWIDLE

global norm1

% Stage one

inter1=[];

for cnt=[1:64]

 inter1=[inter1,fft8ptb(insig(cnt:64:512))];

end

% Reorder data set

inter2=[];

for cnt=[1:8]

 inter2=[inter2,inter1(cnt:8:512)];

end

% Multiply by twidle factor using method two

inter2([1:512])=floor(inter2([1:512]).*TWIDLE(mod([0:8:4095],512).*floor([0:8:4095]/512)+1)./2^(18-norm1));

inter2=checkover(inter2,20);

% Send to 64 point FFTs

inter3=[];

for cnt=[1:64:449]

 inter3=[inter3,fft64ptb(inter2(cnt:cnt+63))];

end

% Reorder data set

inter4=[];

for cnt=[1:64]

 inter4=[inter4,inter3(cnt:64:512)];

end

vert=inter4;

return;

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 64 Point FFT Module %%%

function vret=fft64ptb(insig)

global TWIDLE

global norm12

% Stage one

inters1=[];

for cnts=[1:8]

 inters1=[inters1,fft8ptb(insig(cnts:8:64))];

end

% Reorder data set

inters2=[];

for cnts=[1:8]

 inters2=[inters2,inters1(cnts:8:64)];

end

% Multiply by twidle factor using metod two

inters2([1:64])=floor(inters2([1:64]).*TWIDLE(mod([0:64:4095],512).*floor([0:64:4095]/512)+1)./2^(18-norm12));

inters2=checkover(inters2,20);

% Send to 8 point FFTs

inters3=[];

for cnts=[1:8:57]

 inters3=[inters3,fft8ptb(inters2(cnts:cnts+7))];

end

% Reorder data set

inters4=[];

for cnts=[1:8]

 inters4=[inters4,inters3(cnts:8:64)];

end

% Compare acutual and simulated

vret=inters4;

return;

%%%

%%% 8 Point FFT Module %%

% Assume input signal is 20 bit quantization

function vret=fft8ptb(sig1)

if length(sig1)~=8

 disp('Length of input signal must be eight.')

 return

end

% reorder data set

sig=[sig1(1:2:7),sig1(2:2:8)];

inter1(1) = floor((sig(1) + sig(3))/2);

inter1(2) = floor((sig(2) + sig(4))/2);

inter1(3) = floor((sig(1) - sig(3))/2);

inter1(4) = floor((sig(2) - sig(4))/2);

inter1(5) = floor((sig(5) + sig(7))/2);

inter1(6) = floor((sig(6) + sig(8))/2);

inter1(7) = floor((sig(5) - sig(7))/2);

inter1(8) = floor((sig(6) - sig(8))/2);

inter1=checkover(inter1,20);

%disp('Y=');

%disp(sprintf(' %d',inter1))

%disp(sprintf(' %d',imag(inter1)))

inter(1) = floor((inter1(1) + inter1(2))/4);

inter(2) = floor((inter1(3) -j*inter1(4))/4);

inter(3) = floor((inter1(1) - inter1(2))/4);

inter(4) = floor((inter1(3) +j*inter1(4))/4);

inter(5) = floor((inter1(5) + inter1(6))/4);

inter(6) = floor((inter1(7) -j*inter1(8))/2);

inter(7) = floor((inter1(5) - inter1(6))/2);

inter(8) = floor((inter1(7) +j*inter1(8))/2);

inter=checkover(inter,20);

%disp('Zo');

%disp(sprintf(' %d',inter));

%disp(sprintf(' %d',imag(inter)))

%stage two

inter(6)=wmult(inter(6),'p4');

inter(7)=floor(amult(inter(7),'-j')/2);

inter(8)=wmult(inter(8),'3p');

%disp('Z=');

%disp(sprintf(' %d',inter))

%disp(sprintf(' %d',imag(inter)))

%stage three

final(1)=floor((inter(1)+inter(5))/2);

final(2)=floor((inter(2)+inter(6))/2);

final(3)=floor((inter(3)+inter(7))/2);

final(4)=floor((inter(4)+inter(8))/2);

final(5)=floor((-inter(5)+inter(1))/2);

final(6)=floor((-inter(6)+inter(2))/2);

final(7)=floor((-inter(7)+inter(3))/2);

final(8)=floor((-inter(8)+inter(4))/2);

final=checkover(final,20);

%subplot(2,1,1);stem(abs(final))

%subplot(2,1,2);stem(abs(fft(sig1)))

vret=final;

return;

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Root 2 Multiplication Module %%

function rets=wmult(number,operation)

if operation=='p4'

 % This models deus ex machina method for multiplcation by exp(-j*pi/4)

 ione=real(number)+imag(number);

 jone=floor((floor(ione*2^(-1))+floor(ione*2^(-3))+floor(ione*2^(-4))+floor(ione*2^(-6))+floor(ione*2^(-8))+floor(ione*2^(-9)))/2);

 itwo=-real(number)+imag(number);

 jtwo=floor((floor(itwo*2^(-1))+floor(itwo*2^(-3))+floor(itwo*2^(-4))+floor(itwo*2^(-6))+floor(itwo*2^(-8))+floor(itwo*2^(-9)))/2);

 rets = jone+j*jtwo;

 return;

end

if operation=='3p'

 % This models deus ex machina method for multiplcation by exp(-j*3*pi/4)

 ione=-real(number)+imag(number);

 jone=floor((floor(ione*2^(-1))+floor(ione*2^(-3))+floor(ione*2^(-4))+floor(ione*2^(-6))+floor(ione*2^(-8))+floor(ione*2^(-9)))/2);

 itwo=real(number)+imag(number);

 jtwo=floor((floor(itwo*2^(-1))+floor(itwo*2^(-3))+floor(itwo*2^(-4))+floor(itwo*2^(-6))+floor(itwo*2^(-8))+floor(itwo*2^(-9)))/2);

 rets = jone-j*(jtwo+1);

 return;

end

return

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Model Binary Multiplication %%%

function rets=amult(number,operation)

if operation=='-j'

 % This models bitwise inversion of real component and flipping of the imaginary and real part

 rets=number*(-j)-j;

 return;

end

disp('Error amult called and not used');

return

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Model Binary Conjugation %%%

function rets=bconj(number)

% This models bitwise inversion of imaginary component

rets=real(number)+j*(-imag(number)-1);

return;

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Keep Track Of Bits %%%

function rets=checkover(express,bits)

if max(abs(real(express)))>2^(bits-1)-1

 disp('Warning: Overflow')

end

if max(abs(imag(express)))>2^(bits-1)-1

 disp('Warning: Overflow')

end

for cnt=[1:length(express)]

 if (real(express(cnt))>2^(bits-1)-1)

 express(cnt)=express(cnt)-2^bits;

 end

 if (real(express(cnt))<-2^(bits-1))

 express(cnt)=express(cnt)+2^bits;

 end

 if (imag(express(cnt))>2^(bits-1)-1)

 express(cnt)=express(cnt)-j*2^bits;

 end

 if (imag(express(cnt))<-2^(bits-1))

 express(cnt)=express(cnt)+j*2^bits;

 end

end

rets=express;

return

%%%

%%%

% FFT simulation 2 %

% %

% Raytheon Team %

% %

% Andrew Puryear %

% Graham Booker %

% Mike Neatherlin %

% Christopher Washington %

% Paul Fuller %

% %

% This program simulates the FFT, using text files. %

%%%

function toret=bitrot()

clear;

load a.mat;

load b.mat;

load c.mat;

load TWIDLE.mat;

load TWIDLEi.mat;

load TWIDLE2.mat;

nom1=14;

normalizer=0;

nom2=18-normalizer;

nom3=18-2*normalizer;

adc=zeros(1,8192);

for t=[0:1000:12000]

 adc=adc+.8*cos(2*pi*t*[1:8192]/31240.6);

 disp(t);

end

adc = adc./max(abs(adc));

ddec1 = floor(adc.*32767);

sig=ddec1(1:2:8192)+j*ddec1(2:2:8192);

sig=checkover(sig,16);

% BRO 1a

sig_1=sig(a(1,:));

% FFT 1

sig_2=[];

for cnt=[1:8:4096]

 sig_2=[sig_2,fft8ptb(sig_1(cnt:cnt+7))];

end

% BRO 1b

sig_3=sig_2(b(1,:));

% TF 1

sig_4=floor(sig_3.*(TWIDLE(1,TWIDLEi(1,:))+j*TWIDLE(2,TWIDLEi(1,:)))./2^nom1);

sig_4=checkover(sig_4,20);

% BRO 2a

sig_5=sig_4(a(2,:));

% FFT 2

sig_6=[];

for cnt=[1:8:4096]

 sig_6=[sig_6,fft8ptb(sig_5(cnt:cnt+7))];

end

% BRO 2b

sig_7=sig_6(b(2,:));

% TF 2

sig_8=floor(sig_7.*(TWIDLE(1,TWIDLEi(2,:))+j*TWIDLE(2,TWIDLEi(2,:)))./2^nom2);

sig_8=checkover(sig_8,20);

% BRO 3a

sig_9=sig_8(a(3,:));

% FFT 3

sig_10=[];

for cnt=[1:8:4096]

 sig_10=[sig_10,fft8ptb(sig_9(cnt:cnt+7))];

end

% BRO 3b

sig_11=sig_10(b(3,:));

% TF 3

sig_12=floor(sig_11.*(TWIDLE(1,TWIDLEi(3,:))+j*TWIDLE(2,TWIDLEi(3,:)))./2^nom3);

sig_12=checkover(sig_12,20);

% BRO 4a

sig_13=sig_12(a(4,:));

% FFT 4

sig_14=[];

for cnt=[1:8:4096]

 sig_14=[sig_14,fft8ptb(sig_13(cnt:cnt+7))];

end

% BRO c1

sig_15=sig_14(c(1,:));

% BRO c2

sig_16=sig_14(c(2,:));

sig_17=floor((real(sig_15)+real(sig_16)+j*(imag(sig_15)-imag(sig_16)))/2);

sig_17=checkover(sig_17,20);

sig_18=floor((real(sig_15)-real(sig_16)+j*(imag(sig_15)+imag(sig_16)))/2);

sig_18=checkover(sig_18,20);

sig_19=floor(sig_18.*(TWIDLE2(1,:)+j*TWIDLE2(2,:))./2^18);

sig_19=checkover(sig_19,20);

sig_20=floor([sig_17+sig_19,sig_17-sig_19]./2);

sig_20=checkover(sig_20,20);

subplot(2,1,1);plot(abs(fft(ddec1)));axis tight;

%subplot(2,1,2);stem(abs(floor(sig_15/2^12)));axis([0 4096 0 max(abs(floor(sig_15/2^12)))]);%axis([0 4096 0 2^7-1]);

subplot(2,1,2);plot(abs(sig_20));axis([0 8192 0 max(abs(sig_20))]);%axis([0 4096 0 2^7-1]);

%toret=sig_15;

return;

%%% 8 Point FFT Module %%

% Assume input signal is 20 bit quantization

function vret=fft8ptb(sig1)

if length(sig1)~=8

 disp('Length of input signal must be eight.')

 return

end

% reorder data set

sig=[sig1(1:2:7),sig1(2:2:8)];

inter1(1) = floor((sig(1) + sig(3))/2);

inter1(2) = floor((sig(2) + sig(4))/2);

inter1(3) = floor((sig(1) - sig(3))/2);

inter1(4) = floor((sig(2) - sig(4))/2);

inter1(5) = floor((sig(5) + sig(7))/2);

inter1(6) = floor((sig(6) + sig(8))/2);

inter1(7) = floor((sig(5) - sig(7))/2);

inter1(8) = floor((sig(6) - sig(8))/2);

inter1=checkover(inter1,20);

%disp('Y=');

%disp(sprintf(' %d',inter1))

%disp(sprintf(' %d',imag(inter1)))

inter(1) = floor((inter1(1) + inter1(2))/4);

inter(2) = floor((inter1(3) -j*inter1(4))/4);

inter(3) = floor((inter1(1) - inter1(2))/4);

inter(4) = floor((inter1(3) +j*inter1(4))/4);

inter(5) = floor((inter1(5) + inter1(6))/4);

inter(6) = floor((inter1(7) -j*inter1(8))/2);

inter(7) = floor((inter1(5) - inter1(6))/2);

inter(8) = floor((inter1(7) +j*inter1(8))/2);

inter=checkover(inter,20);

%disp('Zo');

%disp(sprintf(' %d',inter));

%disp(sprintf(' %d',imag(inter)))

%stage two

inter(6)=wmult(inter(6),'p4');

inter(7)=floor(amult(inter(7),'-j')/2);

inter(8)=wmult(inter(8),'3p');

inter=checkover(inter,20);

%disp('Z=');

%disp(sprintf(' %d',inter))

%disp(sprintf(' %d',imag(inter)))

%stage three

final(1)=floor((inter(1)+inter(5))/2);

final(2)=floor((inter(2)+inter(6))/2);

final(3)=floor((inter(3)+inter(7))/2);

final(4)=floor((inter(4)+inter(8))/2);

final(5)=floor((-inter(5)+inter(1))/2);

final(6)=floor((-inter(6)+inter(2))/2);

final(7)=floor((-inter(7)+inter(3))/2);

final(8)=floor((-inter(8)+inter(4))/2);

final=checkover(final,20);

%subplot(2,1,1);stem(abs(final))

%subplot(2,1,2);stem(abs(fft(sig1)))

vret=final;

return;

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Root 2 Multiplication Module %%

function rets=wmult(number,operation)

if operation=='p4'

 % This models deus ex machina method for multiplcation by exp(-j*pi/4)

 ione=real(number)+imag(number);

 jone=floor((floor(ione*2^(-1))+floor(ione*2^(-3))+floor(ione*2^(-4))+floor(ione*2^(-6))+floor(ione*2^(-8))+floor(ione*2^(-9)))/2);

 itwo=-real(number)+imag(number);

 jtwo=floor((floor(itwo*2^(-1))+floor(itwo*2^(-3))+floor(itwo*2^(-4))+floor(itwo*2^(-6))+floor(itwo*2^(-8))+floor(itwo*2^(-9)))/2);

 rets = jone+j*jtwo;

 return;

end

if operation=='3p'

 % This models deus ex machina method for multiplcation by exp(-j*3*pi/4)

 ione=-real(number)+imag(number);

 jone=floor((floor(ione*2^(-1))+floor(ione*2^(-3))+floor(ione*2^(-4))+floor(ione*2^(-6))+floor(ione*2^(-8))+floor(ione*2^(-9)))/2);

 itwo=real(number)+imag(number);

 jtwo=floor((floor(itwo*2^(-1))+floor(itwo*2^(-3))+floor(itwo*2^(-4))+floor(itwo*2^(-6))+floor(itwo*2^(-8))+floor(itwo*2^(-9)))/2);

 rets = jone-j*(jtwo+1);

 return;

end

return

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Model Binary Multiplication %%%

function rets=amult(number,operation)

if operation=='-j'

 % This models bitwise inversion of real component and flipping of the imaginary and real part

 rets=number*(-j)-j;

 return;

end

disp('Error amult called and not used');

return

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Model Binary Conjugation %%%

function rets=bconj(number)

% This models bitwise inversion of imaginary component

rets=real(number)+j*(-imag(number)-1);

return;

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Keep Track Of Bits %%%

function rets=checkover(express,bits)

if max(abs(real(express)))>2^(bits-1)-1

 disp('Warning: Overflow')

end

if max(abs(imag(express)))>2^(bits-1)-1

 disp('Warning: Overflow')

end

for cnt=[1:length(express)]

 if (real(express(cnt))>2^(bits-1)-1)

 express(cnt)=express(cnt)-2^bits;

 end

 if (real(express(cnt))<-2^(bits-1))

 express(cnt)=express(cnt)+2^bits;

 end

 if (imag(express(cnt))>2^(bits-1)-1)

 express(cnt)=express(cnt)-j*2^bits;

 end

 if (imag(express(cnt))<-2^(bits-1))

 express(cnt)=express(cnt)+j*2^bits;

 end

end

%for cnt=[1:length(express)]

% if (real(express(cnt))>2^(bits-1)-1)

% express(cnt)=2^(bits-1)-1;

% end

% if (real(express(cnt))<-2^(bits-1))

% express(cnt)=-(2^(bits-1)-1);

% end

% if (imag(express(cnt))>2^(bits-1)-1)

% express(cnt)=2^(bits-1)-1;

% end

% if (imag(express(cnt))<-2^(bits-1))

% express(cnt)=-(2^(bits-1)-1);

% end

%end

rets=express;

return

%%%
%%%

% Creates Bit reorders for FFT %

% %

% Raytheon Team %

% %

% Andrew Puryear %

% Graham Booker %

% Mike Neatherlin %

% Christopher Washington %

% Paul Fuller %

% %

% %

%%%

function vret=bitro()

clear;

reorder=[1:4096];

%%%

% Bit reorder bank A

reorder1a=[];

for cnt=[1:512]

 reorder1a=[reorder1a,reorder(cnt:512:4096)];

end

reorder2a=[];

for cnt=[1:512:3585]

 reorder2a=[reorder2a,funcro2a(reorder(cnt:cnt+511))];

end

reorder3a=[];

for cnt=[1:64:4033]

 reorder3a=[reorder3a,funcro3a(reorder(cnt:cnt+63))];

end

fid = fopen('veriloga.txt','w');

fprintf(fid,'(%6.0f, %6.0f, %6.0f, %6.0f)\n',[reorder1a;reorder2a;reorder3a;reorder]);

fclose(fid);

a=[reorder1a;reorder2a;reorder3a;reorder];

save a a;

%%%

% Bit reorder bank B

reorder1b=[];

for cnt=[1:8]

 reorder1b=[reorder1b,reorder(cnt:8:4096)];

end

reorder2b=[];

for cnt1=[0:512:3585]

 for cnt=[1:8]

 reorder2b=[reorder2b,reorder(cnt1+cnt:8:cnt1+cnt+511)];

 end

end

reorder3b=[];

for cnt1=[0:64:4033]

 for cnt=[1:8]

 reorder3b=[reorder3b,reorder(cnt1+cnt:8:cnt1+cnt+63)];

 end

end

reorder4b=[1:4096];

reorder4b_1=[];

for cnt=[1:64:4033]

 reorder4b_1=[reorder4b_1,funcro3a(reorder4b(cnt:cnt+63))];

end

reorder4b_2=[];

for cnt=[1:512:3585]

 reorder4b_2=[reorder4b_2,funcro2a(reorder4b_1(cnt:cnt+511))];

end

reorder4b_3=[];

for cnt=[1:512]

 reorder4b_3=[reorder4b_3,reorder4b_2(cnt:512:4096)];

end

fid = fopen('verilogb.txt','w');

fprintf(fid,'(%6.0f, %6.0f, %6.0f)\n',[reorder1b;reorder2b;reorder3b]);

fclose(fid);

b=[reorder1b;reorder2b;reorder3b];

save b b;

reorderc=[reorder4b_3(1), fliplr(reorder4b_3(2:length(reorder4b_3)))];

fid = fopen('verilogc.txt','w');

fprintf(fid,'(%6.0f %6.0f)\n',[reorder4b_3;reorderc]);

fclose(fid);

c=[reorder4b_3;reorderc];

save c c;

%%%

% Twidle factor generation and indexing

TWIDLE=[real(floor(exp(-j*2*pi/4096*[0:3577]).*2^18));imag(floor(exp(-j*2*pi/4096*[0:3577]).*2^18))];

fid = fopen('verilogtf.txt','w');

fprintf(fid,'(%6.0f, %6.0f)\n',TWIDLE);

fclose(fid);

save TWIDLE TWIDLE

TWIDLE1=mod([0:4095],512).*floor([0:4095]/512)+1;

TWIDLE2=mod([0:8:4095],512).*floor([0:8:4095]/512)+1;

for cnt=[1:3]

 TWIDLE2=[TWIDLE2,TWIDLE2];

end

TWIDLE3=mod([0:64:4095],512).*floor([0:64:4095]/512)+1;

for cnt=[1:6]

 TWIDLE3=[TWIDLE3,TWIDLE3];

end

fid = fopen('verilogto.txt','w');

fprintf(fid,'(%6.0f, %6.0f, %6.0f)\n',[TWIDLE1;TWIDLE2;TWIDLE3]);

fclose(fid);

TWIDLEi=[TWIDLE1;TWIDLE2;TWIDLE3];

save TWIDLEi TWIDLEi;

TWIDLE2=[real(floor((-j)*exp(-j*pi/4096*[0:4095]).*2^18));imag(floor((-j)*exp(-j*pi/4096*[0:4095]).*2^18))];

fid = fopen('verilogtf2.txt','w');

fprintf(fid,'(%6.0f, %6.0f)\n',TWIDLE2);

fclose(fid);

save TWIDLE2 TWIDLE2

return;

%%%

% Functions for Bit reorders

function vret=funcro2a(insig)

 reout=[];

 for cnt=[1:64]

 reout=[reout,insig(cnt:64:512)];

 end

 vret=reout;

return

function vret=funcro3a(insig)

 reout=[];

 for cnt=[1:8]

 reout=[reout,insig(cnt:8:64)];

 end

 vret=reout;

return

%%%

% Analog Filter Simulation %

% %

% Raytheon Team %

% %

% Andrew Puryear %

% Graham Booker %

% Mike Neatherlin %

% Christopher Washington %

% Paul Fuller %

% %

% This program takes as its input a number put into the %

% variable runs which dictates how many runs it will execute. %

% Each run simulates 150 micro seconds. The output is %

% written to a binary file which is the simulated output of %

% the analog to digital converter. %

% %

%%%

lpz = []; %These values are used to store the state of the filters

bpz = []; %in between runs so that the data can be segmented.

lpmz = [];

lpd1=[];

lpd2=[];

lpd3=[];

lpd4=[];

bpd1=[];

bpd2=[];

bpd3=[];

bpd4=[];

%open the output file.

fp = fopen('outputnoise.txt', 'w');

Fs=1.9994E9;

for run = 1:runs

%Generate ~150 micro seconds of noise at ~2Ghz sample rate

input = randn(1,300000);

%Simulate 144-148Mhz filter

[lowpass lpz]= filter(filt1.tf.num, filt1.tf.den, input, lpz);

[bandpassed bpz]= filter(filt2.tf.num, filt2.tf.den, lowpass, bpz);

%Mix it down to 20Mhz IF and elimanate alias

t=[1/Fs:1/Fs:length(bandpassed)/Fs];

mixed = bandpassed.*cos(t*2*pi*124E6);

[lpmixed lpmz]= filter(filt3.tf.num, filt3.tf.den, mixed, lpmz);

%Decimate it to allow easier design of filters

%Now sample rate is at ~80Mhz

downed = decimate(lpmixed, 25);

%Simualte the 4-pole crystal filter

%(May still need some work in the future)

[lpdowned lpd1]= filter(filt4.tf.num, filt4.tf.den, downed, lpd1);

[lpdowned lpd2]= filter(filt4.tf.num, filt4.tf.den, lpdowned, lpd2);

[lpdowned lpd3]= filter(filt4.tf.num, filt4.tf.den, lpdowned, lpd3);

[lpdowned lpd4]= filter(filt4.tf.num, filt4.tf.den, lpdowned, lpd4);

[theoutput bpd1]= filter(filt5.tf.num, filt5.tf.den, lpdowned, bpd1);

[theoutput bpd2]= filter(filt5.tf.num, filt5.tf.den, theoutput, bpd2);

[theoutput bpd3]= filter(filt5.tf.num, filt5.tf.den, theoutput, bpd3);

[theoutput bpd4]= filter(filt5.tf.num, filt5.tf.den, theoutput, bpd4);

%Simulate output of ADC

%Write each 80th point to a file get sample rate of 999.7Khz

fwrite(fp, theoutput(1:80:12000), 'real*8');

%Let the user know we are going somewhere.

disp(strcat(strcat('did run ', num2str(run)), strcat(' of ', num2str(runs))));

end

fclose(fp);

%%%

% Filter Response Graph %

% %

% Raytheon Team %

% %

% Andrew Puryear %

% Graham Booker %

% Mike Neatherlin %

% Christopher Washington %

% Paul Fuller %

% %

% This program takes the filters as the input and generates %

% the frequency response for these filters %

% %

%%%

%Generate the frequency response of each filter

filt1z = freqz(filt1.tf.num, filt1.tf.den, 3000);

filt2z = freqz(filt2.tf.num, filt2.tf.den, 3000);

filt3z = freqz(filt3.tf.num, filt3.tf.den, 3000);

filt4z = freqz(filt4.tf.num, filt4.tf.den, 3000).^4;

filt5z = freqz(filt5.tf.num, filt5.tf.den, 3000).^4;

%Plot the response of the first filter and label it

semilogy([1/3000:Fs/2/3000:Fs/2], abs(filt1z.*filt2z));

xlabel('Frequency (Hz)');

ylabel('Intesity');

title('144-148Mhz Bandpass Filter');

pause;

%Plot the response of the second filter and label it

semilogy([1/3000:Fs/2/3000:Fs/2], abs(filt3z));

xlabel('Frequency (Hz)');

ylabel('Intesity');

title('Mixer Lowpass Filter');

pause;

%Plot the response of the 4-pole crystal filter and label it

semilogy([1/3000:Fs/2/25/3000:Fs/2/25], abs(filt4z.*filt5z));

xlabel('Frequency (Hz)');

ylabel('Intesity');

title('12Khz Bandpass Filter centered at 20Mhz');
Appendix B - Hardware Module I/O Descriptions
� EMBED Equation.3 ���

� EMBED Equation.3 ���

�

�

Verilog Module Map

�

Figure 3.4-4: Pipelined Fast-Array Multiplier

�

Figure 3.4-3: Carry-Look Ahead Adder

�

Figure 3.4-2: Pipelined Adder

�

Figure 3.4-1: Ripple-Carry Adder

Figure 9-1: Tracking Chart

Figure 7.4-2

�

Figure 5.1-2: Hardware Data Path

� EMBED Flash.Movie ���

Figure 7.4-1

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Figure 5.1-12: 144-148MHz Bandpass Filter

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Figure 5.1-5: Decimation Filter

�

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Figure 5.1-6: FFT Engine

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Figure 5.1-7: Eight-point FFT

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED SmartDraw.2 ���

Figure 5.1-8: Final Eight Point FFT

� EMBED SmartDraw.2 ���

Figure 5.1-9: Multiplication by exp(-j*pi/4)

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED SmartDraw.2 ���

Figure 5.1-10: Multiplication by exp(-j*3pi/4)

� EMBED Equation.3 ���

Figure 5.1-13: Mixer Lowpass Filter

Figure 5.1-14: 12kHz Bandpass Filer Centered at 20 MHz

55
76

[image: image107.wmf](

)

(

)

[

]

4

1

2

sin

2

sin

ï

þ

ï

ý

ü

ï

î

ï

í

ì

=

-

-

f

R

j

j

e

f

fR

e

H

p

w

p

p

[image: image108.wmf]ï

î

ï

í

ì

-

£

£

÷

ø

ö

ç

è

æ

-

-

=

otherwise

L

n

n

L

n

w

,

0

1

0

,

1

2

cos

1

2

1

)

(

p

[image: image109.wmf]k

N

p

w

2

=

[image: image110.wmf]D

F

F

f

S

p

p

w

2

2

=

=

[image: image111.wmf]ND

kF

F

S

=

[image: image112.wmf]ND

F

k

F

S

=

¶

¶

[image: image113.wmf]n

r

r

x

pf

l

n

y

32

))

(

(

)

(

=

=

[image: image114.wmf])

1

2

(

ˆ

)

(

)

2

(

ˆ

)

(

2

1

+

=

=

n

x

n

g

n

x

n

g

[image: image115.wmf])

(

)

(

)

(

2

1

n

jg

n

g

n

g

+

=

[image: image116.wmf][

]

)

cos(

)

cos(

2

1

)

cos(

)

cos(

b

a

b

a

b

a

+

+

-

=

[image: image117.wmf])

(

)

(

)

(

ˆ

n

w

n

x

n

x

=

[image: image118.wmf](

)

4

sin

sin

)

(

÷

ø

ö

ç

è

æ

=

R

f

f

f

H

p

p

[image: image119.wmf](

)

4

1

1

)

(

-

-

=

z

z

H

C

[image: image120.wmf]4

4

16

=

=

R

G

[image: image121.wmf]é

ù

é

ù

bits

B

R

B

in

out

32

16

16

log

4

log

4

2

2

=

+

=

+

=

[image: image122.wmf](

)

(

)

(

)

(

)

6

5

4

3

2

1

603367

.

0

603367

.

0

4

3

4

3

033635

.

193582

.

278341

.

44742

.

611503

.

55369

.

1

1

31

.

31

.

35

.

1

)

(

-

-

-

-

-

-

-

-

-

+

-

-

+

+

=

-

-

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

z

z

z

z

z

z

e

z

e

z

z

z

e

z

e

z

z

H

i

i

j

j

p

p

[image: image123.wmf]î

í

ì

£

£

=

=

otherwise

n

n

w

where

n

w

n

x

n

x

,

0

8191

0

,

1

)

(

)

(

)

(

)

(

ˆ

[image: image124.wmf]6249

5

*

32

10

*

7

.

999

)

(

)

(

3

=

ú

ú

ù

ê

ê

é

=

ú

ú

ù

ê

ê

é

D

D

=

F

D

k

F

N

S

[image: image125.wmf]î

í

ì

-

£

£

=

otherwise

L

n

n

w

,

0

1

0

,

1

)

(

[image: image126.wmf][

]

[

]

)

(

)

(

2

1

)

(

)

(

)

(

2

1

)

(

*

2

*

1

k

N

G

k

G

j

k

G

k

N

G

k

G

k

G

-

-

=

-

+

=

[image: image127.wmf]4095

,...,

1

,

0

)

(

)

(

)

(

4095

,...,

1

,

0

)

(

)

(

)

(

2

2

1

2

2

1

=

-

=

+

=

+

=

k

k

G

W

k

G

N

k

X

k

k

G

W

k

G

k

X

k

N

k

N

[image: image128.wmf]8

8

N

LM

N

=

=

[image: image129.wmf]l

m

N

n

+

=

8

[image: image130.wmf]q

p

k

+

=

8

[image: image131.wmf](

)

å

å

=

-

=

÷

ø

ö

ç

è

æ

+

+

=

7

0

1

8

/

0

8

8

)

,

(

)

,

(

m

N

l

l

m

N

q

p

N

W

m

l

x

q

p

X

[image: image132.wmf](

)

8

8

8

8

Nmq

N

Nmp

N

lq

N

lp

N

l

m

N

q

p

N

W

W

W

W

W

=

÷

ø

ö

ç

è

æ

+

+

[image: image133.wmf]lp

N

lp

N

mq

Nmq

N

Nmp

N

W

W

and

W

W

W

8

/

8

8

8

,

,

1

=

=

=

[image: image134.wmf]å

å

-

=

=

þ

ý

ü

î

í

ì

=

1

8

/

0

8

/

7

0

8

)

,

(

)

,

(

N

l

lp

N

m

mq

lq

N

W

W

m

l

x

W

q

p

X

[image: image135.jpg]X1 7JISO[LIBA Ul PAI0)S AL J3S JH0)OC) I[PPLA)) JO SpIed AICUISCUT PUE [T Y |,

AreuiSeunn 3y ppe pue

T 0T 9 9Y[e) pue 8T, Aq ap1alq [ead doy Yy WIog) [231 WI0))0) Joenqns
doy w0y wonoq rNqNS ‘siutod S60f Wopoq 3 101
H <60F =
— +60t-
.)
s u
. 1
L d o
2 2 a
8T T/ 10)00) u
azie | | a[ppIwy ane 9 o
wioN| | {q Ajdpnyy | |uwoN < °
£ p
N v i
L € °
\ (4 ?
B ! 5 q JX)'I50[LI9A U PAQLIDSIP
E.M‘“_-.._%u oNN__ A aau s.19p10a.1 3satp Jo uonv.aado ay |
uLIo N <60t &
F60F :
u
' =
° snq (Lreursewy 07 3 [64 07) 14 OPXT
a
U .
azie " snq (LreurSewy (7 3 (€31 (07) G 0+X96() —
9
= ¢ 5 snq (LxewEewy of 3 [€31 0F) 1q 08X9G0F » == » ==
¥ X -
€ o L |
(4 ? =
I o JX)'eS0[LIdA U PaqLIdSIP
0 19pa031 STy Jo uonuaado Y|
wopoq 0y doy ppy AreaiSeun doy oy wioay L1eurSeun
UoNo(A WILNS PUE [£21 21 PP JXrqSoqLIas ur paquisap| s .
syutod cGof doy oy Jog 19p10a.1 sy Jo uoesado ayy| u (&)
T
i §
o sanpogy - a
0013 oat s 220¢ ao1Ey 4 Lad (eppynm)| [Siang o
. 1xXp0)SoLIaA ur _.oao_-vmea_. Wou::_. 200¢ YL R . THoSTE = : ol 1)s1Say [T i s
X)'J1SO0[LI9A UI PAI0)s AL 13 10)OU) A[PPIA) A Jo spied LreurSewuy pue [LaI YL | . o
FXPJFO[IOA UL PO.I0}S 21U 95 10JILY JIPPL U JO 5} Seu put | ﬁ.ﬁz&::Z. % Soi p
P X i
] i o
. 9
Ll
a
! q 81T/
8IvT/
lecmcmemep 47
JzZI[EULION

T 0T 94 33} pue 8, 7 Aq IPIAIP ‘ssed Pap o PPV
SEST 0T 3Yp e} pue g1, 7 Aq IpIaIp ‘ssed puodss oy LYY
ST 0T AU ey U 1, 7 Aq apIa1p ‘ssed Js.a1p oy Joyy

[image: image136.wmf]å

å

=

=

-

=

=

7

0

8

7

0

8

2

)

(

)

(

)

(

n

kn

n

kn

j

W

n

x

e

n

x

k

X

p

[image: image137.wmf]3

0

1

0

,

4

3

0

1

0

,

2

£

£

£

£

+

=

£

£

£

£

+

=

q

and

p

q

p

k

m

and

l

m

l

n

[image: image138.wmf]å

å

å

å

=

=

=

=

+

+

=

=

1

0

3

0

8

3

8

4

8

12

8

1

0

3

0

)

4

)(

2

(

8

)

,

(

)

,

(

)

,

(

l

m

lq

pl

mq

mp

l

m

l

m

q

p

W

W

W

W

m

l

x

W

m

l

x

q

p

X

[image: image139.wmf]å

å

=

=

þ

ý

ü

î

í

ì

ú

û

ù

ê

ë

é

=

1

0

2

3

0

4

8

)

,

(

)

,

(

l

lp

m

mq

lq

W

W

m

l

x

W

p

q

X

[image: image140.wmf]å

å

=

=

+

=

3

0

4

2

8

3

0

4

)

,

1

(

)

,

0

(

)

,

(

m

mq

p

q

m

mq

W

m

x

W

W

W

m

x

p

q

X

[image: image141.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

1

1

1

1

1

1

1

1

1

1

1

1

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

3

2

0

q

F

W

q

F

W

q

F

W

q

F

W

j

j

j

j

q

X

q

X

q

X

q

X

q

N

q

N

q

N

N

[image: image142.wmf]+

+

+

+

+

2

-4

2

-3

2

-1

2

-6

2

-8

2

-9

+

+

+

+

+

+

2

-4

2

-3

2

-1

2

-6

2

-8

2

-9

+

a

b

Real Part

Imaginary Part

-1

[image: image143.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

0

1

0

1

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

3

2

0

q

F

W

q

F

W

q

F

W

q

F

W

j

j

q

X

q

X

q

X

q

X

q

N

q

N

q

N

N

[image: image144.wmf]exp

(-

j

p

/4)

exp

(-

j3

p

/4)

x(7)

x(5)

x(3)

x(1)

x(6)

x(4)

x(2)

x(0)

X(0)

X(7)

X(6)

X(5)

X(4)

X(3)

X(1)

X(2)

-1

-1

-

j

j

-1

-1

-1

-

j

j

-1

-

j

-1

-1

-1

-1

[image: image145.wmf]2

2

2

2

4

j

e

j

-

=

-

p

[image: image146.wmf])

(

2

2

)

(

2

2

2

2

2

2

)

(

b

a

j

b

a

j

jb

a

+

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

+

[image: image147.wmf](

)

9

8

6

4

3

1

2

2

2

2

2

2

2

2

-

-

-

-

-

-

+

+

+

+

+

@

[image: image148.wmf](

)

(

)

)

(

*

2

2

2

2

2

2

)

(

*

2

2

2

2

2

2

2

2

2

2

)

(

9

8

6

4

3

1

9

8

6

4

3

1

b

a

j

b

a

j

jb

a

+

+

+

+

+

+

+

-

+

+

+

+

+

=

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

-

-

-

-

-

-

-

-

-

-

-

[image: image149.wmf]+

+

+

+

+

2

-4

2

-3

2

-1

2

-6

2

-8

2

-9

+

+

+

+

+

+

2

-4

2

-3

2

-1

2

-6

2

-8

2

-9

+

a

b

Real Part

-Imaginary Part

-1

[image: image150.emf]0 1 2 3 4 5 6 7 8 9 10

x 10

8

10

-30

10

-25

10

-20

10

-15

10

-10

10

-5

10

0

Frequency [Hz]

Intesity

Figure 5.1-5: 144-148Mhz Bandpass Filter

[image: image151.png]Design Work (No. of Hours)

900

800

700

600

500

400

300

200

100

Tracking Chart

— Predicted
— Actual

Week

10

1

12

13

14

15

_1081851493.unknown

_1081858795.unknown

_1081869685.unknown

_1081869834.unknown

_1081874257.bin

_1081884282.bin

_1081889458.bin

_1081875024.unknown

_1081875099.unknown

_1081875274.bin

_1081875068.unknown

_1081874987.unknown

_1081871111.unknown

_1081871494.bin

_1081870998.unknown

_1081869760.unknown

_1081869788.unknown

_1081869719.unknown

_1081861318.unknown

_1081861351.unknown

_1081861396.unknown

_1081861336.unknown

_1081861254.unknown

_1081861283.unknown

_1081861224.unknown

_1081856174.unknown

_1081856473.unknown

_1081858779.unknown

_1081856248.unknown

_1081854145.unknown

_1081856104.unknown

_1081852014.unknown

_1081853796.unknown

_1081854112.unknown

_1081852031.unknown

_1081851729.unknown

_1078143929.unknown

_1081692839.unknown

_1081706214.unknown

_1081715966.unknown

_1081764415.unknown

_1081715723.unknown

_1081705181.unknown

_1081684820.bin

_1081691232.unknown

_1081692432.unknown

_1081689885.unknown

_1081682937.unknown

_1081683273.bin

_1081682915.unknown

_1076359792.unknown

_1076360631.unknown

_1076360761.unknown

_1076360969.unknown

_1078143872.unknown

_1076361044.unknown

_1076360941.unknown

_1076360712.unknown

_1076360145.unknown

_1076360204.unknown

_1076359803.unknown

_1076359228.bin

_1076359444.unknown

_1076359481.unknown

_1076359395.unknown

_1074204390.unknown

_1076004843.bin

_1076359146.unknown

_1076359198.unknown

_1076069555.bin

_1074254896.unknown

_1074204368.unknown

